Category Archives: energy

is bioenergy a viable future option?

I haven’t investigated this issue before, and my general uninformed view as I begin this post is that producing fuel somehow from plants when we’re already having problems with over-use of land, and maintaining biodiversity, seems like a solution which will likely cause further problems downstream.

This general view I’ve found well expressed in an article published in The Guardian and on the World Resources Institute website in late January 2015, nearly seven years ago now. Were the authors correct then, and has anything changed since?

The 2015 article argues for solar energy as a more efficient use of sunlight, which, essentially is what bioenergy also uses. However, there are problems with getting energy generated from the sun, in, say, the Sahara Desert, to regions of high demand in Europe. And there may be ways of harnessing bioenergy without excessive land use. An article published in Nature Sustainability at the beginning of this year (2021) suggests, in its abstract, that:

growing perennial grasses on recently abandoned cropland is a near-term strategy for gradual bioenergy deployment with reduced risks for food security and the environment

The full article is behind a pay-wall, and I’m poor and cheap, but the authors appear to be arguing that a fair amount of bioenergy potential, measured in exajoules (that’s a ginormous number of joules) can be tapped from abandoned cropland, and from increasing areas of potential cropland, without affecting biodiversity or utilising essential water resources.

None of this suggests that bioenergy has major potential for an immediate future that looks increasingly dire. Saul Griffith, an Australian scientist, inventor and entrepreneur, spoke on the Climate One podcast (Electrify Everything, Oct 29 2021) about the situation.

There’ll be some geothermal; there’ll be some biofuels for some applications; there’ll be some hydroelectricity. But wind and solar are now proven to be the cheapest generators of electricity in the world.

The International Energy Agency (IEA) has an article from earlier this year about bioenergy, land, and the net-zero-emissions-by-2050 target. This is a new area for me, so I was interested in the quoted fact that, currently, some 40% of bioenergy supply (about 25 exajoules) is from solid biomass (wood, and waste materials). This is a traditional use, mostly for cooking, ‘which is inefficient, often linked to deforestation, and whose pollution was responsible for 2.5 million premature deaths in 2020’. The aim is to reduce this type of fuel to zero by 2030 – which does sound optimistic.

The plan, or hope, is to transfer to and control a sustainable bioenergy supply as part of a transformed energy economy. This energy, IEA reckons, will be divided into solid bioenergy, biogas, liquid biofuels and bioenergy with carbon capture and storage. We’re talking 2050 here, and the IEA article writes about it in the present tense (a bit weird – for example ‘by 2050 almost half of liquid biofuel use is for aviation’). It projects that around 5% of our energy generation will come from bio, and that it will be ‘an important source of low-emissions flexibility to complement variable generation from solar PV and wind’. It will also be used in the paper and cement industries, to meet high temperature heat requirements not easily electrified, and in the early future to 2030 it will be used to replace ‘dirty’ biomass – for example, improved stoves. The IEA also appears to be talking up carbon capture and storage (CCS, or BECCS if you unite it with bioenergy), that somewhat vague technology which has yet to prove itself. I’ll have to write about that in future, to comprehend the process and to see if any progress has been made.

The IEA projects that the 2050 bioenergy supply (that 5% of total) will amount to around 100 exajoules. In its optimistic scenario, 60% of this supply will come from ‘sustainable waste streams’ which don’t require land use, compared to 20% currently. The idea appears to be that we will have come much closer to solving the current waste problem – from plastics to clothing  and various recyclables. Sorting and utilising will presumably be much more efficient, perhaps using advanced AI. There is also much talk of ‘advanced’ biofuels, presumably more efficient and energy dense. 

The controversial issue of utilising food crops and land for bioenergy is addressed, with a scenario that involves increased usage up to 2030, then gradually reducing to zero by 2050. Short-rotation woody crops (which are generally more productive of bioenergy) on marginal lands will largely replace them.

This emphasis on reclaimed land for bioenergy-producing short-rotation woodland makes me wonder about something outside of the IEA’s purview – the other life that such woodland might sustain, or not, as the case may be. What sort of birdlife, for example, would be attracted to such human-designed forests? A forest without birdlife would be an empty place indeed, but how would any bird fit into this human scenario? The IEA’s narrow focus thus becomes problematic when biodiversity issues are raised, but intercommunication on these issues should allow such woodland to be sustainable from a biodiversity perspective. 

 Another interesting usage in this IEA projection is the term ‘advanced’ . There will be ‘advanced’ biofuels by 2050, as well as ‘advanced’ short-rotation woody crops, and other such advances. In some respects, this is a reasonable assumption, but unforeseen consequences are unseen, after all. Still, the IEA are intent on collaboration with other stakeholders, including presumably spokespeople for those without a voice, such as all non-human species. Quite a large and varied sector. 

An article on ResearchGate from two years ago, ‘The Future of Bioenergy”, argues that land-intensive bioenergy may have uses in the short-term but is not a viable long-term option, due largely to the promise of other technologies. It quotes an earlier IEA study that finds that bioenergy has become an increasingly significant part of the current energy mix, a situation that’s likely to pertain for some time, but not so much for the long term. It also questions the viability of BECCS, which was promoted in an earlier IPCC paper. The problem with bioenergy, it seems, is that it may not be, and is unlikely to be, as green as its proven alternatives. There are, of course, major problems in applying green energy to aviation and to some heavy industries, and some current methods of biofuel production are hardly less harmful than those for conventional fuels. Land use is also an issue fraught with unforeseeables. But of course, researchers will continue their research, and new breakthroughs are always possible. Something to keep an eye on.

References

https://www.nature.com/articles/s41893-020-00680-5

https://www.climateone.org/audio/electrify-everything

https://www.iea.org/articles/what-does-net-zero-emissions-by-2050-mean-for-bioenergy-and-land-use

https://www.researchgate.net/publication/336740381_The_Future_of_Bioenergy

Advertisement

a hydrogen energy industry in South Australia?

an artist’s impression of SA’s hydrogen power project

I recently received in the mail a brochure outlining SA Labor’s hydrogen energy jobs plan, ahead of the state election in March 2022. The conservatives are currently in power here. The plan involves building ‘a 200MW hydrogen fuelled power station to provide firming capacity in the South Australian Electricity Market’.

So, what does a ‘hydrogen fuelled power station’ entail, what is ‘firming capacity’ and what does 200MW mean?

A presumably USA site called energy.gov tells me this:

Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses, for portable power, and in many more applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources.

This raises more questions than answers, for me. I can understand that hydrogen is a clean fuel – after all, it’s the major constituent, molecularly speaking, of water, which is pretty clean stuff. But what exactly is meant by ‘clean’ here? Do they mean ‘carbon neutral’, one of today’s buzz terms? Presumably so, and obviously hydrogen doesn’t contain carbon. Next question, what exactly is a fuel cell? Wikipedia explains:

fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from metals and their ions or oxides that are commonly already present in the battery, except in flow batteries. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

So the planned 200 megawatt power station will use the chemical energy of hydrogen, and oxygen as an oxidising agent, to produce electricity through a pair of redox reactions. Paraphrasing another website, the electricity is produced by combining hydrogen and oxygen atoms. This causes a reaction across an electrochemical cell, which produces water, electricity, and some heat. The same website tells me that, as of October 2020, there were 161 fuel cells operating in the US with, in total, 250 megawatts of capacity. The planned SA power station will have 200 megawatts, so does that make it a gigantic fuel cell, or a fuel cell collective? In any case, it sounds ambitious. The process of extracting the hydrogen is called electrolysis, and the devices used are called electrolysers, which will be powered by solar energy. Excess solar will no longer need to be switched off remotely during times of low demand.

There’s no doubt that the fortunes of hydrogen as a clean fuel are on the rise. It’s also being considered more and more as a storage system to provide firming capacity – to firm up supply that intermittent power sources – solar and wind – can’t always provide. The completed facility should be able to store 3600 tonnes of hydrogen, amounting to about two months of supply. There are export opportunities too, with all this excess supply. Japan and South Korea are two likely markets.

While it may seem like all this depends on Labor winning state government, the local libs are not entirely averse to the idea. It has already installed the nation’s largest hydrogen electrolyser (small, though, at 1.25 MW) at the Tonsley technology hub, and the SA Energy Minister has been talking up the idea of a hydrogen revolution. The $11.4 million electrolyser, a kind of proof of concept, extracts hydrogen gas from water at a rate of up to 480 kgs per day.

The difference between the libs and labor it seems is really about who pays for the infrastructure. Unsurprisingly, the libs are looking to the private sector, while Labor’s plans are for a government-owned facility, with the emphasis on jobs. Their brochure on the planned power station and ancillary developments is called the ‘hydrogen jobs plan’. According to SA’s Labor leader, Peter Malinauskas, up to 300 jobs will be created in constructing the hydrogen plant, at least 10,000 jobs will be ‘unlocked from the $20bn pipeline of renewable projects in South Australia’ (presumably not all hydrogen-related, but thrown in for good measure) and 900+ jobs will be created through development of a hydrogen export industry. He’s being a tad optimistic, needless to say.

But hydrogen really is in the air these days (well, sort of, in the form of water vapour). A recent New Scientist article, ‘The hydrogen games’, reports that Japan is hoping that its coming Olympic and Paralympic Games (which others are hoping will be cancelled) will be a showcase for its plan to become a ‘hydrogen society’ over the next few decades. And this plan is definitely good news for Australia.

Japan has pledged to achieve net-zero greenhouse gas emissions by 2050. However, this is likely impossible to achieve by solar or other established renewables. There just isn’t enough available areas for large scale solar or wind, in spite of floating solar plants on its lakes and offshore wind farms in planning. This is a problem for its hydrogen plans too, as it currently needs to produce the hydrogen from natural gas. It hopes that future technology will make green hydrogen from local renewables possible, but meanwhile it’s looking to overseas imports, notably from Australia, ‘which has ample sunshine, wind and empty space that make it perfect for producing this fuel’. Unfortunately we also have an ample supply of empty heads in our federal government, which might get in the way of this plan. And the Carbon Club, as exposed by Marian Wilkinson in her book of that name, continues to be as cashed-up and almost thuggishly influential as ever here. The success of the South Australian plan, Labor or Liberal, and the growing global interest in hydrogen as an energy source – France and Germany are also spending big on hydrogen – may be what will finally weaken the grip of the fossil fuel industry on a country seen by everyone else as potentially the best-placed to take financial advantage of the green resources economy.

References

Hydrogen Jobs Plan: powering new jobs & industry (South Australian Labor brochure)

https://www.energy.gov/eere/fuelcells/hydrogen-fuel-basics

https://en.wikipedia.org/wiki/Fuel_cell

https://www.eia.gov/energyexplained/hydrogen/use-of-hydrogen.php

‘The hydrogen games’, New Scientist No 3336 May 2021 pp18-19

Marian Wilkinson: The Carbon Club: How a network of influential climate sceptics, politicians and business leaders fought to control Australia’s climate policy, 2020

https://www.abc.net.au/news/2021-03-23/hydrogen-power-play-in-sa-as-labor-announces-gas-plant-project/100022842

graphene aluminium ion batteries – the big breakthrough?

GMG's coin battery unveiled

GMG’s coin battery unveiled

So I’ve heard more exciting info recently from the Skeptics Guide to the Universe (SGU), this time returning me to Australia – Queensland more specifically. And some are describing this as the big battery technology breakthrough many of us have been waiting and hoping for.

So, lithium-ion batteries go back to the late sixties, though we can go back further to the twenties when it was noted that lithium’s electrochemical properties, such as low density, high specific capacity and low redox potential, would make it a likely battery anode material. I’m tempted to go into a thorough self-education investigation of how li-ion batteries were developed and how they work, but I’ll resist it and go straight to the new tech.

Graphene is an allotrope, or form, of carbon, as is diamond and various fullerenes. It consists of a single layer of atoms in a hexagonal lattice. Graphite, a very stable carbon allotrope, consists of stacked layers of graphene. The clean technology company Graphene Manufacturing Group (GMG), based in Queensland, manufactures graphene via a ‘proprietary production process’ which utilises natural gas (methane) rather than graphite. Its current principal focus, according to its website, is ‘developing applications for energy saving and energy storage solutions’. In its corporate overview, here’s what the company has to say on the battery front:

In the energy storage segment GMG and the University of Queensland are working collaboratively with financial support from the Australian Government to progress research and development, and ultimately explore the commercialization of GMG graphene aluminium-ion batteries. Aluminium-ion batteries have the potential to have better energy density than lithium-ion batteries. Graphene Aluminium-ion batteries may eliminate many disadvantages of LI Batteries, including the risk of overheating/fire and performance degradation. Management believes that successful commercialization of the Graphene Aluminium-ion batteries would result in a superior substitute to LI Batteries in targeted applications.

At this point they are promising longer battery life – up to 3 times – and very much faster charging – up to 60 times, something like a supercapacitor. There are no problems with overheating – lithium requires a cooling system, using more space and energy. They also describe the battery as ‘planet-friendly’, in that it doesn’t require scarce resources, such as lithium, which has become much more expensive recently. In fact, Australia is the world’s largest producer of bauxite ore, from which aluminium and gallium are extracted, so these batteries could put Australia in the box seat for production and manufacture. A ‘secure and simplified supply chain’ is one of the benefits touted by the company. Other benefits include safety (no catching fire), stability (no spontaneous discharge, i.e. energy leakage), and improved energy and power density. The batteries will have a longer lifespan, with many charge-discharge cycles. And at the end of the day they should be more recyclable. GMG also promises that these new batteries can be fitted within existing battery housing – no modifications required.

So how does the battery work? Here’s where I have to learn stuff. These are a class of rechargeable battery in which aluminium ions flow from the anode (the positive electrode) to the cathode and back. As to the cathode, I think that’s where graphene comes in. Based on breakthrough technology developed at the University of Queensland’s Australian Institute for Bioengineering and Nanotechnology, the battery cells ‘use nanotechnology to insert aluminium atoms inside tiny perforations in graphene planes’. Aluminium ions are trivalent, meaning they have three valent, or ‘free’, electrons to play with, compared to lithium’s one. This has had both benefits and disadvantages in the past. The three units of charge per ion means more energy density or storage capacity, but, according to Wikipedia, ‘the electrostatic intercalation of the host materials with a trivalent cation is too strong for well-defined electrochemical behaviour’. I don’t know what this means, but presumably this is the problem that the use of graphene solves.

Whether these new batteries will effectively replace li-ion batteries is a question. Established industries don’t move aside easily, and it’s likely that the new technology will be better for some applications than for others. Li-ion is not only well established, the technology is constantly improving. And nickel metal hydride, the previous form of rechargeable battery, still has its place, I believe.

Things are apparently moving fast. GMG CEO and Managing Director Craig Nicol said, “We are currently looking to bring coin cell commercial prototypes for customer testing in 6 months and a pouch pack commercial prototype – used in mobile phones, laptops etc. – for customer testing in 18 months. We are really excited about bringing this to market. We aim to have a viable graphene and coin cell battery production facility project after customer validation that we would likely build here in Australia”. According to the SGU the company expects to have EV batteries ready by 2024.

So that’s about it. But here’s some other random but relevant info:

Since 2005, lithium costs have increased nine-fold, while aluminium costs have increased by 20%.

Currently 90% of lithium is accessed from China, 10% from Chile – but I heard on Fully Charged that Australia is a major source of lithium, so I’m confused.

Basic ingredients of the new battery: ‘aluminum foil, aluminum chloride (the precursor to aluminium and it can be recycled), ionic liquid and urea’ (Craig Nicol)

From graphene-info.com: Now, GMG has shared the initial performance data when tested in coin cells for the patent-pending surface perforation of graphene in aluminium-ion batteries developed by the Company and the University of Queensland (“UQ”). Currently, GMG Graphene is producing coin cell prototypes for customer testing in Q4 2021.’

From Dr. Ashok Nanjundan, GMG’s Chief Scientific Officer: “This is a real game-changing technology which can offer a real alternative with an interchangeable battery technology for the existing lithium-ion batteries in almost every application with GMG’s Graphene and UQ’s patent-pending aluminium ion battery technology. The current nominal voltage of our batteries is 1.7 volts, and work is being carried out to increase the voltage to directly replace existing batteries and which lead to higher energy densities….. The real differentiator about these batteries is their very high power density of up to 7000 watts/kg, which endows them with a very high charge rate. Furthermore, graphene aluminium-ion batteries provide major benefits in terms of longer battery life (over 2000 charge / discharge cycles testing so far with no deterioration in performance), battery safety (very low fire potential) and lower environmental impact (more recyclable)”.

So, I’ll be following developments over the next few months and years…

References and links

https://www.graphene-info.com

https://www.forbes.com/sites/michaeltaylor/2021/05/13/ev-range-breakthrough-as-new-aluminum-ion-battery-charges-60-times-faster-than-lithium-ion/?sh=3be2b61a6d28

https://en.wikipedia.org/wiki/Aluminium-ion_battery

flying close to the sun

solar wind and our magnetic shield-field – so much more to learn

I’m not a physicist, or anything else scientific, I’m just an ageing sponge, trying to suck up knowledge and understandings in the diminishing time I have left. Physics is just one vast web of knowledge that I’ve barely stepped upon, to mix metaphors, but that won’t stop me trying to make some sense of orbital mechanics in this post, with the help of the Skeptics’ Guide to the Universe (episode 826), and other sources.

The NASA Parker Solar Probe (PSB) is the fastest human-built object, and also holds the record for closeness to the sun. It was launched in August 2018 and weighs around 73 kgs. Named for Eugene Parker – a multi-award-winning solar astrophysicist who worked out the effects of the solar wind and predicted the spiral shape of the solar magnetic field in the outer solar system – the PSB recently (only a month ago) got to within about ten million kilometres of the sun’s service. The next closest artificial object was the Helios spacecraft, in 1976, at a distance of about 43 million kms. Mercury, which has a highly elliptical orbit, only gets as close as 47 million kms at perihelion.

The PSB is part of NASA’s Living With a Star (LWS) program, which investigates the Sun-Earth system as it affects our sun-dependent and sometimes sun-threatened lives. For example, the SGU references the Carrington Event, the largest geomagnetic storm on record, caused by a solar coronal mass ejection hitting the Earth’s magnetosphere in early September 1859. If such an event occurred today, it would cause massive damage to our electrical grid systems and satellites. So the PSB is designed to study the sun’s corona and solar wind, presumably in the hope of providing an early warning of future events. For this purpose it’s loaded with various forms of detecting and measuring instruments. However, my interest here is in trying to understand how the probe gets from Earth to the Sun’s corona, how it’s expected to reach speeds of up to 690,000 km/h, and how it can withstand the temperatures in the corona.

It has apparently been calculated that it takes 55 times the energy to get to the Sun as it takes to get to Mars. This is all about orbital mechanics – the sun is spectacularly massive, making up 99.8% of the mass of the solar system. That means it also has a spectacularly massive gravitational pull on the Earth, and all other orbiting bodies. It’s the Earth’s ‘sideways’ velocity (107,208 km/h) that keeps it from falling into the sun. So the Earth’s orbital velocity needs to be taken into account – cancelled out – in planning a trip to the Sun. It turns out that it’s inordinately difficult to do so. With current technology they have only managed to cancel out about 80% of this velocity – which will bring the PSB close to the Sun but not close enough. Travelling to the outer planets is much easier. The probe would leave Earth at 40,000 km/h (escape velocity) and would require a relatively slight boost (6-7,000 km/h) to reach Mars, and further small boosts to reach the other outer planets.

The solution to this cancellation problem is to employ an orbital manipulation called Venus Earth Gravity Assist (VEGA). The PSB was sent to Venus to reduce the sideways orbital motion. Every swing around Venus further reduces this motion, and allows the PSB to decrease the orbital perihelion ultimately to about 7 million kms, at which time it will be travelling at its maximum speed. This will occur at Christmas Eve 2024 (they can be quite precise, apparently), after the last of its planned seven swings around Venus. The probe’s orbit around the Sun will be highly elliptical, with a minimum of time spent around perihelion, to prevent radiation damage to the craft and instrumentation. 

Of course the PSB will also come equipped with probably the most sophisticated heat shield or thermal protection system ever built, which will protect it not only from the intense heat and radiation but from high-velocity dust particles. It measures about 2.5 metres in diameter and is made from carbon foam between layers of superheated carbon-carbon composite, aka reinforced carbon-carbon (carbon fibre in a matrix of graphite). Its outer aluminium oxide coating is, naturally, reflective white, to protect probe and equipment from a maximum temperature at perihelion of about 1370 degrees celsius. NASA expects that the inner side of the shield will be at a little under 30 degrees – so cool in fact that some instruments will be independently heated to operate at maximum efficiency. The probe has been created to be as autonomous as possible, given its distance from Earth. For example, if instrumentation somehow becomes exposed to radiation, four light sensors will ‘detect the first traces of direct sunlight coming from the shield limits and [engage] movements from reaction wheels to reposition the spacecraft within the shadow again’, to quote the Wikipedia article on the probe. 

This solar probe concept was first mooted in the late 1950s but was regularly postponed due to costs. The initial idea was for a less direct route using a gravity assist from Jupiter, which would have created a longer and more expensive mission and would have required a nuclear battery called a radioisotope thermal generator. Something to research in another post maybe. 

So I won’t pretend that I understand all the mathematics of this probe’s voyage, but I do know that it has been successful so far, at least in terms of its travel – the Venus assists and the solar orbits, which will all come to an end on August 29 2025. As to whether it will be successful in its research tasks, that will have to be evaluated over time. What precisely are those research tasks? There are three main ones: to trace the flow of energy that heats the corona and accelerates the solar wind, to determine the structure and dynamics of the magnetic fields that create the solar wind, and to determine what mechanisms accelerate and transport energetic particles.

Whether the knowledge gained will protect us from future solar wind and electromagnetic activity nobody knows. Predictions about the future are probably the most uncertain predictions of all. 

References

Episode #826

https://science.nasa.gov/heliophysics/programs/living-with-a-star

https://en.wikipedia.org/wiki/Parker_Solar_Probe

https://www.cosmos.esa.int/documents/1700208/1718748/06+Luhmann+Living+with+the+Sun.pdf/337d8891-ba5f-6534-42ea-92eff2131797

https://en.wikipedia.org/wiki/Carrington_Event

https://www.nasa.gov/feature/goddard/2018/its-surprisingly-hard-to-go-to-the-sun

the battery, Snowy Hydro and other stuff

Let’s get back to batteries, clean energy and Australia. Here’s a bit of interesting news to smack our clean-energy-fearing Feds with – you know, Freudenberg, Morrison and co. The Tesla Big Battery successfully installed at the beginning of summer, and lampooned by the Feds, turns out to be doing a far better job than expected, and not just here in South Australia. Giles Parkinson reported on it in Renew Economy on December 19:

The Tesla big battery is having a big impact on Australia’s electricity market, far beyond the South Australia grid where it was expected to time shift a small amount of wind energy and provide network services and emergency back-up in case of a major problem.

Last Thursday, one of the biggest coal units in Australia, Loy Yang A 3, tripped without warning at 1.59am, with the sudden loss of 560MW and causing a slump in frequency on the network.

What happened next has stunned electricity industry insiders and given food for thought over the near to medium term future of the grid, such was the rapid response of the Tesla big battery to an event that happened nearly 1,000km away.

The Loy Yang brown coal fired power station is in south eastern Victoria, so why did South Australia’s pride and joy respond to a problem in our dirty-coal neighbouring state? It surely wouldn’t have been contracted to, or would it? Parkinson also speculates about this. Apparently, when a power station trips, there’s always another unit contracted to provide back-up, officially called FCAS (frequency control and ancillary services). In Loy Yang’s case it’s a coal generator in Gladstone, Queensland. This generator did respond to the problem, within seconds, but the Tesla BB beat it to the punch, responding within milliseconds. That’s an important point; the Tesla BB didn’t avert a blackout, it simply proved its worth, without being asked. And it has been doing so regularly since early December. It seems the Tesla BB has cornered the market for fast frequency control. Don’t hold your breath for the Feds to acknowledge this, but they will have taken note, unless they’re completely stupid. They’ll be finding some way to play it (or downplay it) politically.

As Parkinson notes in another article, the energy industry has been slow to respond, in terms of regulation and accommodation, to the deployment of battery systems and their rapid charge-discharge features. Currently, providing FCAS is financially rewarded, which may have to do with costs involved but the cost/reward relationship appears to be out of kilter. In any case, battery response is much more cost-effective and threatens the antiquated reward system. The AEMC is planning to review frequency control frameworks, but it’ll no doubt be a slow process.

This is an incredibly complex area, combining new, barely-understood (by me) technologies of generation and storage, and the transformation of long-standing energy economies, with a host of vested interests, subsidies and forward plans, but I intend to struggle towards enlightenment, as far as I can.

Neoen’s Hornsdale Wind Farm

Regardless of regulation and grid problems, renewable energy projects keep on popping up, or at least popping into my consciousness through my desultory reading (NY resolution: inform myself much more on what’s going on, here and elsewhere, in clean energy). For example, the Murra Warra wind farm’s first stage will have an output of 226MW,  which has already been sold to a consortium of Australian corporations including Telstra and ANZ. The farm is near Horsham in western Victoria, and will finally have a capacity of up to 429MW, making it one of the biggest in the Southern Hemisphere. And of course there are many other projects underway. Back in August, the Renewable Energy Index, a monthly account of the renewable energy sector, was launched. Its first publication, by Green Energy Markets, was a benchmark report for 2016-7, all very glossy and positive. The latest publication, the November index, shows that rooftop solar installations for that month broke the monthly record set in June 2012 when subsidies were twice to three times what they are today. The publication’s headline is that the 2020 RET will be exceeded and that there are ‘enough renewable energy projects now under development to deliver half of Australia’s electricity by 2030’. The Clean Energy Council, the peak body for Australian dean energy businesses, also produces an annual report, so it will be interesting to compare its 2017 version with the Renewable Energy Index.

Hydro is in fact the biggest clean energy provider, with 42.3% of the nation’s renewable energy according to the 2016 Clean Energy Australia Report. Wind, however, is the fastest growing provider. This brings me to a topic I’ve so far avoided: The $4 billion Snowy Hydro 2 scheme.

Here’s what I’m garnering from various experts. It’s a storage scheme and that’s all to the good. As a major project it will have a long lead time, and that’s not so good, especially considering the fast growing and relatively unpredictable future for energy storage. As a storage system it will be a peak load provider, so can’t be compared to the Hazelwood dirty coal station, which is a 24/7 base load supplier. There’s a lot of misinformation from the Feds about the benefits, eg to South Australia, which won’t benefit and doesn’t need it, it’s sorting its own problems very nicely thanks. There’s a question about using water as an electricity supplier, due to water shortages, climate change and the real possibility of more droughts in the future. There are also environmental considerations – the development is located in Kosciuszko National Park. There’s some doubt too about the 2000MW figure being touted by the Feds, an increase of 50% to the existing scheme. However, many of these experts, mostly academics, favour the scheme as a boost to renewable energy investment which should be applied along with the other renewables to transform the market. In saying this, most experts agree that there’s been a singular lack of leadership and common-sense consensus on dealing with this process of transformation. It has been left mostly to the states and private enterprise to provide the initiative.

 

the tides – a massive potential resource?

A floating tidal turbine, Orkney islands, as seen on Fully Charged

A recent episode of Fully Charged, the Brit video series on the sources and harnessing of clean energy, took us again to the very windy Orkney Isles at the top of Scotland to have a look at some experimental work being done on generating energy from tidal forces. When you think of it, it seems a no-brainer to harness the energy of the tides. They’re regular, predictable, unceasing, and in some places surely very powerful. Yet I’ve never heard of them being used on an industrial scale.

Of course, I’m still new to this business, so the learning curve continues steep. Tide mills have been used historically here and there, possibly even since Roman times, and tidal barrages have been operating since the sixties, the first and for a long time the largest being the La Rance plant, off the coast of Brittany, generating 240 MW. A slightly bigger one has recently been built in Korea (254 MW).

But tidal barrages – not what they’re testing in the Orkneys – come with serious environmental impact issues. They’re about building a barrage across a bay or estuary with a decent tidal flow. The barrage acts as a kind of adjustable dam, with sluice gates that open and close, and additional pumping when necessary. Turbines generate energy from pressure and height differentials, as in a hydro-electric dam. Research on the environmental impact of these constructions, which can often be major civil engineering projects, has revealed mixed results. Short-term impacts are often devastating, but over time one type of diversity has been replaced by another.

Anyway, what’s happening in the Orkneys is something entirely different. The islanders, the Scottish government and the EU are collaborating through an organisation called EMEC, the European Marine Energy Centre, to test tidal power in the region. They appear to be inviting innovators and technicians to test their projects there. A company called ScotRenewables, for example, has developed low-maintenance floating tidal turbines with retractable legs, one of which is currently being tested in the offshore waters. They’re designed to turn with the ebb and flood tides to maximise their power generation. It’s a 2 MW system, which of course could be duplicated many times over in the fashion of wind turbines, to generate hundreds if not thousands of megawatts. The beauty of the system is its reliability – as the tidal flow can be reliably predicted at least eighteen years into the future, according to the ScotRenewables CEO. This should provide a sense of stability and confidence to downstream suppliers. Also, floating turbines could easily be removed if they’re causing damage, or if they require maintenance. Clearly, the effect on the tidal system would be minimal compared to an estuarine barrage, though there are obvious dangers to marine life getting too close to turbines. The testing of these turbines is coming to an end and they’ve been highly successful so far, though they already have an improved turbine design in the wings, which can be maintained either in situ or in dock. The design can also be scaled down, or up, to suit various sites and conditions.

rotors are on retractable legs, to protect from storms, etc

Other quite different turbine types are being tested in the region, with a lot of government and public support, but I got the slight impression that commercial support for this kind of technology is somewhat lacking. In the Fully Charged video on this subject (to which I owe most of this info), Robert Llewelyn asked the EMEC marketing manager whether she thought tidal or wave energy had the greatest future potential (she opted for wave). My ears pricked up, as wave energy is another newie for me. Duh. Another post, I suppose.

As mentioned though in this video, a lot of the developments in this tidal technology have come from shipbuilding technology, from offshore oil and gas technology, and from maritime technology more generally, as well as modern wind turbine technology, further impressing on me that skills are transferable and that the cheap clean energy revolution won’t be the economic/employment disaster that the fossil fuel dinosaurs predict. It’s a great time for innovation, insight and foresight, and I can only hope that more government and business people in Australia, where I seem to be stuck, can get on board.

fixed underwater tidal turbine being tested off the Orkney Islands

capacitors, supercapacitors and electric vehicles

(this is reblogged from the new ussr illustrated, first published September 5 2017)

from the video ‘what are supercapacitors’

Jacinta: New developments in battery and capacitor technology are enough to make any newbie’s head spin.

Canto: So what’s a supercapacitor? Apart from being a super capacitor?

Jacinta: I don’t know but I need to find out fast because supercapacitors are about to be eclipsed by a new technology developed in Great Britain which they estimate as being   ‘between 1,000 and 10,000-times more effective than current supercapacitors’.

Canto: Shite, they’ll have to think of a new name, or downgrade the others to ‘those devices formerly known as supercapacitors’. But then, I’ll believe this new tech when I see it.

Jacinta: Now now, let’s get on board, superdisruptive technology here we come. Current supercapacitors are called such because they can charge and discharge very quickly over large numbers of cycles, but their storage capacity is limited in comparison to batteries…

Canto: Apparently young Elon Musk predicted some time ago that supercapacitors would provide the next major breakthrough in EVs.

Jacinta: Clever he. But these ultra-high-energy density storage devices, these so-much-more-than-super-supercapacitors, could enable an EV to be charged to a 200 kilometre range in just a few seconds.

Canto: So can you give more detail on the technology?

Jacinta: The development is from a UK technology firm, Augmented Optics, and what I’m reading tells me that it’s all about ‘cross-linked gel electrolytes’ with ultra-high capacitance values which can combine with existing electrodes to create supercapacitors with greater energy storage than existing lithium-ion batteries. So if this technology works out, it will transform not only EVs but mobile devices, and really anything you care to mention, over a range of industries. Though everything I’ve read about this dates back to late last year, or reports on developments from then. Anyway, it’s all about the electrolyte material, which is some kind of highly conductive organic polymer.

Canto: Apparently the first supercapacitors were invented back in 1957. They store energy by means of static charge, and I’m not sure what that means…

Jacinta: We’ll have to do a post on static electricity.

Canto: In any case their energy density hasn’t been competitive with the latest batteries until now.

Jacinta: Yes it’s all been about energy density apparently. That’s one of the main reasons why the infernal combustion engine won out over the electric motor in the early days, and now the energy density race is being run between new-age supercapacitors and batteries.

Canto: So how are supercapacitors used today? I’ve heard that they’re useful in conjunction with regenerative braking, and I’ve also heard that there’s a bus that runs entirely on supercapacitors. How does that work?

Jacinta: Well back in early 2013 Mazda introduced a supercapacitor-based regen braking system in its Mazda 6. To quote more or less from this article by the Society of Automotive Engineers (SAE), kinetic energy from deceleration is converted to electricity by the variable-voltage alternator and transmitted to a supercapacitor, from which it flows through a dc-dc converter to 12-V electrical components.

Canto: Oh right, now I get it…

Jacinta: We’ll have to do posts on alternators, direct current and alternating current. As for your bus story, yes, capabuses, as they’re called, are being used in Shanghai. They use supercapacitors, or ultracapacitors as they’re sometimes called, for onboard power storage, and this usage is likely to spread with the continuous move away from fossil fuels and with developments in supercaps, as I’ve heard them called. Of course, this is a hybrid technology, but I think they’ll be going fully electric soon enough.

Canto: Or not soon enough for a lot of us.

Jacinta: Apparently, with China’s dictators imposing stringent emission standards, electric buses, operating on power lines (we call them trams) became more common. Of course electricity may be generated by coal-fired power stations, and that’s a problem, but this fascinating article looking at the famous Melbourne tram network (run mainly on dirty brown coal) shows that with high occupancy rates the greenhouse footprint per person is way lower than for car users and their passengers. But the capabuses don’t use power lines, though they apparently run on tracks and charge regularly at recharge stops along the way. The technology is being adopted elsewhere too of course.

Canto: So let me return again to basics – what’s the difference between a capacitor and and a super-ultra-whatever-capacitor?

Jacinta: I think the difference is just in the capacitance. I’m inferring that because I’m hearing, on these videos, capacitors being talked about in terms of micro-farads (a farad, remember, being a unit of capacitance), whereas supercapacitors have ‘super capacitance’, i.e more energy storage capability. But I’ve just discovered a neat video which really helps in understanding all this, so I’m going to do a breakdown of it. First, it shows a range of supercapacitors, which look very much like batteries, the largest of which has a capacitance, as shown on the label, of 3000 farads. So, more super than your average capacitor. It also says 2.7 V DC, which I’m sure is also highly relevant. We’re first told that they’re often used in the energy recovery system of vehicles, and that they have a lower energy density (10 to 100 times less than the best Li-ion batteries), but they can deliver 10 to 100 times more power than a Li-ion battery.

Canto: You’ll be explaining that?

Jacinta: Yes, later. Another big difference is in charge-recharge cycles. A good rechargeable battery may manage a thousand charge and recharge cycles, while a supercap can be good for a million. And the narrator even gives a reason, which excites me – it’s because they function by the movement of ions rather than by chemical reactions as batteries do. I’ve seen that in the videos on capacitors, described in our earlier post. A capacitor has to be hooked up to a battery – a power source. So then he uses an analogy to show the difference between power and energy, and I’m hoping it’ll provide me with a long-lasting lightbulb moment. His analogy is a bucket with a hole. The amount of water the bucket can hold – the size of the bucket if you like – equates to the bucket’s energy capacity. The size of the hole determines the amount of power it can release. So with this in mind, a supercar is like a small bucket with a big hole, while a battery is more like a big bucket with a small hole.

Canto: So the key to a supercap is that it can provide a lot of power quickly, by discharging, then it has to be recharged. That might explain their use in those capabuses – I think.

Jacinta: Yes, for regenerative braking, for cordless power tools and for flash cameras, and also for brief peak power supplies. Now I’ve jumped to another video, which inter alia shows how a supercapacitor coin cell is made – I’m quite excited about all this new info I’m assimilating. A parallel plate capacitor is separated by a non-conducting dielectric, and its capacitance is directly proportional to the surface area of the plates and inversely proportional to the distance between them. Its longer life is largely due to the fact that no chemical reaction occurs between the two plates. Supercapacitors have an electrolyte between the plates rather than a dielectric…

Canto: What’s the difference?

Jacinta: A dielectric is an insulating material that causes polarisation in an electric field, but let’s not go into that now. Back to supercapacitors and the first video. It describes one containing two identical carbon-based high surface area electrodes with a paper-based separator between. They’re connected to aluminium current collectors on each side. Between the electrodes, positive and negative ions float in an electrolyte solution. That’s when the cell isn’t charged. In a fully charged cell, the ions attach to the positively and negatively charged electrodes (or terminals) according to the law of attraction. So, our video takes us through the steps of the charge-storage process. First we connect our positive and negative terminals to an energy source. At the negative electrode an electrical field is generated and the electrode becomes negatively charged, attracting positive ions and repelling negative ones. Simultaneously, the opposite is happening at the positive electrode. In each case the ‘counter-ions’ are said to adsorb to the surface of the electrode…

Canto: Adsorption is the adherence of ions – or atoms or molecules – to a surface.

Jacinta: So now there’s a strong electrical field which holds together the electrons from the electrode and the positive ions from the electrolyte. That’s basically where the potential energy is being stored. So now we come to the discharge part, where we remove electrons through the external surface, at the electrode-electrolyte interface we would have an excess of positive ions, therefore a positive ion is repelled in order to return the interface to a state of charge neutrality – that is, the negative charge and the positive charge are balanced. So to summarise from the video, supercapacitors aren’t a substitute for batteries. They’re suited to different applications, applications requiring high power, with moderate to low energy requirements (in cranes and lifts, for example). They can also be used as voltage support for high-energy devices, such as fuel cells and batteries.

Canto: What’s a fuel cell? Will we do a post on that?

Jacinta: Probably. The video mentions that Honda has used a bank of ultra capacitors in their FCX fuel-cell vehicle to protect the fuel cell (whatever that is) from rapid voltage fluctuations. The reliability of supercapacitors makes them particularly useful in applications that are described as maintenance-free, such as space travel and wind turbines. Mazda also uses them to capture waste energy in their i-Eloop energy recovery system as used on the Mazda 6 and the Mazda 3, which sounds like something worth investigating.

References (videos can be accessed from the links above)

http://www.hybridcars.com/supercapacitor-breakthrough-allows-electric-vehicle-charging-in-seconds/

https://en.wikipedia.org/wiki/Supercapacitor

http://www.power-technology.com/features/featureelectric-vehicles-putting-the-super-in-supercapacitor-5714209/

http://articles.sae.org/11845/

https://www.ptua.org.au/myths/tram-emissions/

http://www.europlat.org/capabus-the-finest-advancement-for-electric-buses.htm

what are capacitors?

(this is reblogged from the new ussr illustrated, first published August 29 2017)

the shapes and sizes of capacitors – a screenshot taken from the youtube vid – What are Capacitors? – Electronics Basics 11

Jacinta: We’re embarking on the clearly impossible task of learning about every aspect of clean (and sometimes dirty because nothing’s 100% clean or efficient) technology – batteries, photovoltaics, turbines, kilo/megawatt-hours, glass electrolytes, powerwalls, inverters, regen, generators, airfoils, planetary gear sets, step-up transformers, nacelles AND capacitors.

Canto; Enough to last us a lifetime at our slow pace. So what, in the name of green fundamentalism, is a capacitor?

Jacinta: Well I’ve checked this out with Madam Youtube…

Canto: Professor Google’s co-dependent…

Jacinta: And in one sense it’s simple, or at least it sounds simple. Capacitors store electric charge, and the capacitance of a capacitor relates to how much charge it can hold.

Canto: So how does it do that, and what’s the purpose of storing electric charge?

Jacinta: Okay now you’re complicating matters, but basic to all capacitors are two separated pieces of conducting material, usually metal. Connected to a battery, they store charge…

Canto: Which is a kind of potential energy, right?

Jacinta: Umm, I think so. So take your battery with its positive and negative terminals. Attach one of the bits of conducting material (metal) to the positive terminal and you’ll get a flow of negatively-charged electrons to that terminal, because of ye olde law of attraction. This somehow means that electrons are repelled from the negative terminal  (which we’ve hooked up to the other bit of metal in the capacitor). So because the first strip of metal has lost electrons it has become positively charged, and the other bit of metal, having gained electrons, has an equal and opposite charge. So each piece of metal has the same magnitude of charge, measured in coulombs. This is regardless of the size and shape of the different metal bits.

Canto: But this process reaches a limit, though, yes? A kind of saturation point…

Jacinta: Well there comes a point where, yes, the accumulated charge just sits there. This is because there comes a kind of point of equilibrium between the positive battery terminal and the now positively charged strip of metal. The electrons are now caught between the attractive positive terminal and the positive strip.

Canto: Torn between two lovers, I know that foolish feeling.

Jacinta: So now if you remove the battery, so breaking the circuit, that accumulated charge will continue to sit there, because there’s nowhere to go.

Canto: And of course that accumulated or stored charge, or capacitance, is different for different capacitors.

Jacinta: And here’s where it gets really complicated, like you know, maths and formulae and equations. C = Q/V, capacitance equals the charge stored by the capacitor over the voltage across the capacitor. That charge (Q), in coulombs, is measured on one side of the capacitor, because the charges actually cancel each other out if you measure both sides, making a net charge of zero. So far, so uncomplicated, but try and get the following. When a capacitor stores charge it will create a voltage, which is essentially a difference in electric potential between the two metal strips. Now apparently (and you’ll have to take my word for this) electric potential is high near positive charges and low near negative charges. So if you bring these two differently charged strips into close proximity, that’s when you get a difference in electric potential – a voltage. If you allow a battery to fully charge up a capacitor, then the voltage across it (between the two strips) will be the same as the voltage in the battery. The capacitance, Q/V, coulombs per volt, is measured in farads, after Micky Faraday, the 19th century electrical wizz. I’m quoting this more or less verbatim from the Khan Academy video on capacitors, and I’m almost finished, but here comes the toughest bit, maths! Say you have a capacitor with a capacitance of 3 farads, and it’s connected to a nine volt battery, the charge stored will be 27 coulombs (3 = 27/9). 3 farads equals 27 coulombs of charge divided by nine volts, or 27 coulombs of charge is 3 farads times 9 volts. Or, if a 2 farad capacitor stores a charge of 6 coulombs, then the voltage across the capacitor will be 3 volts.

Canto: Actually, that’s not so difficult to follow, the maths is the easiest part for me… it’s more the concepts that get me, the very fact that matter has these electrical properties…

Jacinta: Okay here’s the last point made, more or less verbatim, on the Khan Academy video, something worth pondering:

You might think that as more charge gets stored on a capacitor, the capacitance must go up, but the value of the capacitance stays the same because as the charge increases, the voltage across that capacitor increases, which causes the ratio to stay the same. The only way to change the capacitance of a capacitor is to alter the physical characteristics of that capacitor (like making the pieces of metal bigger, or changing the distance between them).

Canto: Okay so to give an example, a capacitor might be connected to an 8 volt battery, but its capacitance is, say, 3 farads. It will be fully charged at 24 coulombs over 8 volts. The charge increases with the voltage, which has a maximum of 8. The ratio remains the same. Yet somehow I still don’t get it. So I’m going to have a look at another video to see if it helps. It uses the example of two metal plates. They start out as electrically neutral. You can’t force extra negativity, in the form of electrons, into one of these plates, because like charges repel, and they’ll be forced out again. But, according to the video, if you place another plate near the first, ‘as electrons accumulate in the first metal plate, they will repel the electrons in the second metal plate’, to which I want to respond, ‘but electrons aren’t accumulating, they’re being repelled’. But let’s just go with the electron flow. So the second metal plate becomes depleted of electrons and is positively charged. This means that it will attract the negatively charged first metal plate. According to the video, this makes it possible for the first plate to have more negative than positive particles, which I think has something to do with the fact that the electrons can’t jump from the first plate to the second, to create an equilibrium.

Jacinta: They’re kind of attracted by absence. That’s what they must mean by electric potential. It’s very romantic, really. But what you’ve failed to notice, is that a force is being continually applied, to counteract the repulsion of electrons from the first plate. If the force no longer applies then, yes, you won’t get that net negative charge in the first plate, and the consequent equal and opposite charge in the second. My question, though, is how can the capacitance increase by bringing the plates closer together? I can see how it can be changed by the size of the conducting material – more electrons, more electric potential. I suppose reducing the distance will increase the repulsive force…

Canto: Yes, let’s assume so. Any, a capacitor, which stores far less charge than a similarly-dimensioned battery can be used, I think, to briefly maintain power to, say, a LED bulb when it is disconnected from the battery. The capacitor, connected to the bulb will discharge its energy ‘across’ the bulb until it achieves equilibrium, which happens quite quickly, and the bulb will fade out. If the capacitor is connected to a number of batteries to achieve a higher voltage, the fully charged capacitor will take longer to discharge, keeping the light on for longer. If the metal plates are larger, the capacitor will take longer to charge up, and longer to discharge across the LED bulb. Finally, our second video (from a series of physics videos made by Eugene Khutoryansky) shows that you can place a piece of ‘special material’ between the two plates. This material contains molecules that change their orientation according to the charges on the plates. They exert a force which attracts more electrons to the negative plate, and repel them from the positive plate, which has the same effect as increasing the area of the plates – more charge for the same applied voltage.

Jacinta: An increase in capacitance.

Canto: Yes, and as you’ve surmised, bringing the two plates closer together increases the capacitance by attracting more electrons to the negatively charged plate and repelling them from the positively charged one – again, more charge for the same voltage.

Jacinta: So you can increase capacitance with a combo of the three – increased size, closer proximity, and that ‘special material’. Now, one advantage of capacitors over batteries is that they can charge up and discharge very quickly. Another is that they can endure many charge-discharge cycles. However they’re much less energy dense than batteries, and can only store a fraction of the energy of a same-sized battery. So the two energy sources have different uses.

Canto: Mmmm, and we’ll devote the next post to the uses to which capacitors can be put in electronics, and EVs and such.

 

electric vehicles in Australia, a sad indictment

(this is reblogged from the new ussr illustrated, first published August 15 2017)

Toyota Prius

I must say, as a lay person with very little previous understanding of how batteries, photovoltaics or even electricity works, I’m finding the ‘Fully Charged’ and other online videos quite addictive, if incomprehensible in parts, though one thing that’s easy enough to comprehend is that transitional, disruptive technologies that dispense with fossil fuels are being taken up worldwide at an accelerating rate, and that Australia is falling way behind in this, especially at a governmental level, with South Australia being something of an exception. Of course the variation everywhere is enormous – for example, currently, 42% of all new cars sold today in Norway are fully electric – not just hybrids. This compares to about 2% in Britain, according to Fully Charged, and I’d suspect that the percentage is even lower in Oz.

There’s so much to find out about and write about in this field it’s hard to know where to start, so I’m going to limit myself in this post to electric cars and the situation in Australia.

First, as very much a lower middle class individual I want to know about cost, both upfront and ongoing. Now as you may be aware, Australia has basically given up on making its own cars, but we do have some imports worth considering, though we don’t get subsidies for buying them as they do in many other countries, nor do we have that much in the way of supportive infrastructure. Cars range in price from the Tesla Model X SUV, starting from $165,000 (forget it, I hate SUVs anyway), down to the Toyota Prius C and the Honda Jazz, both hybrids, starting at around $23,000. There’s also a ludicrously expensive BMW plug-in hybrid available, as well as the Nissan Leaf, the biggest selling electric car worldwide by a massive margin according to Fully Charged, but probably permanently outside of my price range at $51,000 or so.

I could only afford a bottom of the range hybrid vehicle, so how do hybrids work, and can you run your hybrid mostly on electricity? It seems that for this I would want a (more expensive) plug-in hybrid, as this passage from the Union of Concerned Scientists (USA) points out:

The most advanced hybrids have larger batteries and can recharge their batteries from an outlet, allowing them to drive extended distances on electricity before switching to [petrol] or diesel. Known as “plug-in hybrids,” these cars can offer much-improved environmental performance and increased fuel savings by substituting grid electricity for [petrol].

I could go on about the plug-ins but there’s not much point because there aren’t any available here within my price range. Really, only the Prius, the Honda Jazz and a Toyota Camry Hybrid (just discovered) are possibilities for me. Looking at reviews of the Prius, I find a number of people think it’s ugly but I don’t see it, and I’ve always considered myself a person of taste and discernment, like everyone else. They do tend to agree that it’s very fuel efficient, though lacking in oomph. Fuck oomph, I say. I’m the sort who drives cars reluctantly, and prefers a nice gentle cycle around the suburbs. Extremely fuel efficient, breezy and cheap. I’m indifferent to racing cars and all that shite.

Nissan Leaf

I note that the Prius  has regenerative braking – what the Fully Charged folks call ‘regen’. In fact this is a feature of all EVs and hybrids. I have no idea wtf it is, so I’ll explore it here. The Union of Concerned Scientists again:

Regenerative braking converts some of the energy lost during braking into usable electricity, stored in the batteries.

Regenerative braking” is another fuel-saving feature. Conventional cars rely entirely on friction brakes to slow down, dissipating the vehicle’s kinetic energy as heat. Regenerative braking allows some of that energy to be captured, turned into electricity, and stored in the batteries. This stored electricity can later be used to run the motor and accelerate the vehicle.

Of course, this doesn’t tell us how the energy is captured and stored, but more of that later. Regenerative braking doesn’t bring the car to a stop by itself, or lock the wheels, so it must be used in conjunction with frictional braking.  This requires drivers to be aware of both braking systems and how they’re combined – sometimes problematic in certain scenarios.

The V useful site How Stuff Works has a full-on post on regen, which I’ll inadequately summarise here. Regen (in cars) is actually celebrating its fiftieth birthday this year, having been first introduced in the Amitron, a car produced by American Motors in 1967. It never went into full-scale production. In conventional braking, the brake pads apply pressure to the brake rotors to the slow the vehicle down. That expends a lot of energy (imagine a large vehicle moving at high speed), not only between the pads and the rotor, but between the wheels and the road. However, regen is a different system altogether. When you hit the brake pedal of an EV (with hand or foot), this system puts the electric motor into reverse, slowing the wheels. By running backwards the motor acts somehow as a generator of electricity, which is then fed into the EV batteries. Here’s how HSW puts it:

One of the more interesting properties of an electric motor is that, when it’s run in one direction, it converts electrical energy into mechanical energy that can be used to perform work (such as turning the wheels of a car), but when the motor is run in the opposite direction, a properly designed motor becomes an electric generator, converting mechanical energy into electrical energy.

I still don’t get it. Anyway, apparently this type of braking system works best in city conditions where you’re stopping and going all the time. The whole system requires complex electronic circuitry which decides when to switch to reverse, and which of the two braking systems to use at any particular time. The best system does this automatically. In a review of a Smart Electric Drive car (I don’t know what that means – is ‘Smart’ a brand name? – is an electric drive different from an electric car??) on Fully Charged, the test driver described its radar-based regen, which connects with the GPS to anticipate, say, a long downhill part of the journey, and in consequence to adjust the regen for maximum efficiency. Ultimately, all this will be handled effectively in fully autonomous vehicles. Can’t wait to borrow one!

Smart Electric Drive, a cute two-seater

I’m still learning all this geeky stuff – never thought I’d be spending an arvo watching cars being test driven and  reviewed.  But these are EVs – don’t I sound the expert – and so the new technologies and their implications for the environment and our future make them much more interesting than the noise and gas-guzzling stink and the macho idiocy I’ve always associated with the infernal combustion engine.

What I have learned, apart from the importance of battery size (in kwh), people’s obsession with range and charge speed, and a little about charging devices, is that there’s real movement in Europe and Britain towards EVs, not to mention storage technology and microgrids and other clean energy developments, which makes me all the more frustrated to live in a country, so naturally endowed to take advantage of clean energy, whose federal government is asleep at the wheel on these matters, when it’s not being defensively scornful about all things renewable. Hopefully I’ll be able to report on positive local initiatives in this area in future, in spite of government inertia.

on the explosion of battery research – part two, a bitsy presentation

(this is reblogged from the new ussr illustrated, first published August 1 2017)

This EV battery managed to run for 1200 kilometres on a single charge at an average of around 51 mph

Ok, in order to make myself fractionally knowledgable about this sort of stuff I find myself watching videos made by motor-mouthed super-geeks who regularly do blokes-and-sheds experiments with wires and circuits and volt-makers and resistors and things that go spark in the night, and I feel I’m taking a peek at an alternative universe that I’m not sure whether to wish I was born into, but I’ll try anyway to report on it all without sounding too swamped or stupefied by the detail.

However, before I go on, I must say that, since my interest in this stuff stems ultimately from my interest in developing cleaner as well as more efficient energy, and replacing fossil fuel as a principal energy source, I want to voice my suspicions about the Australian federal government’s attitude towards clean and renewable energy. This morning I heard Scott Morrison, our nation’s Treasurer, repeating the same deliberately misleading comments made recently by Josh Frydenberg (the nation’s energy minister, for Christ’s sake) about the Tesla battery, which is designed to provide back-up power as part of a six-point SA government plan which the feds are well aware of but are unwilling to say anything positive about – or anything at all. Morrison, Frydenberg and that other trail-blazing intellectual, Barnaby Joyce, our Deputy Prime Minister, have all been totally derisory of the planned battery, and their pointlessly negative comments have thrown the spotlight on something I’ve not sufficiently noticed before. This government, since the election of just over a year ago, has not had anything positive to say about clean energy. In fact it has never said anything at all on the subject, by deliberate policy I suspect. We know that our PM isn’t as stupid on clean energy as his ministers, but he’s obviously constrained by his conservative colleagues. It’s as if, like those mythical ostriches, they’re hoping the whole world of renewables will go away if they pay no attention to it.

Anyway, rather than be demoralised by these unfortunates, let’s explore the world of solutions.

As a tribute to those can-do, DIY geeky types I need to share a great video which proves you can run an electric vehicle on a single charge for well over 1000ks – theirs made it to 1200ks – 748 miles in that dear old US currency – averaging around 51 mph. It’s well worth a watch, though with all the interest there are no doubt other claimants to the record distance for a single charge. Anyway, you can’t help but admire these guys. Tesla, as the video shows, are still trying to make it to 1000ks, but that’s on a regular, commercial basis of course.

In this video, basically an interview with battery researcher and materials scientist Professor Peter Bruce at Oxford University, the subject was batteries as storage systems. These are the batteries you find in your smart phones and other devices, and in electric vehicles (EVs). They’ll also be important in the renewable energy future, for grid storage. You can pump electricity into these batteries and, through a chemical process that I’m still trying to get my head around, you can store it for later use. As Prof Bruce points out, the lithium-ion battery revolutionised the field by more or less doubling the energy density of batteries and making much recent portable electronics technology possible. This energy density feature is key – the Li-ion batteries can store more energy per unit mass and volume. Of course energy density isn’t the only variable they’re working on. Speed of charge, length of time (and/or amount of activity) between charging, number of discharge-recharge cycles per battery, safety and cost are all vitally important, but when we look at EVs and grid storage you’re looking at much larger scale batteries that can’t be simply upgraded or replaced every few months. So Bruce sees this as an advantage, in that recycling and re-using will be more of a feature of the new electrified age. Also, as very much a  scientist, Bruce is interested in how the rather sudden focus on battery storage reveals gaps in our knowledge which we didn’t really know we had – and this is how knowledge often progresses, when we find we have an urgent problem to solve and we need to look at the basics, the underlying mechanisms. For example, the key to Li-ion batteries is the lithium compound used, and whether you can get more lithium ions out of particular compounds, and/or get them to move more quickly between the electrodes to discharge and recharge the battery. This requires analysis and understanding at the fundamental, atomistic level. Also, current Li-ion batteries for portable devices generally use cobalt in the compound, which is too expensive for large-scale batteries. Iron, manganese and silicates are being looked at as cheaper alternatives. This is all new research – and he makes no mention of the work done by Goodenough, Braga et al.

In any case it’s fascinating how new problems lead to new solutions. The two most touted and developed forms of renewable energy – solar and wind – both have this major problem of intermittence. In the meantime, battery storage, for portable devices and EVs, has become a big thing, and now new developments are heating up the materials science field in an electrifying way, which will in turn hot up the EV and clean energy markets.

The video ended by neatly connecting with the geeky DIY video in showing how dumped, abandoned laptop batteries and other batteries had plenty of capacity left in them – more than 60% in many cases, which is more than useful for energy storage, so they were being harvested by PhD students for use in small-scale energy storage systems for developing countries. Great for LED lighting, which requires little power. The students were using an algorithm to get each battery in the system to discharge at different rates (since they all had different capacities or charge left in them) so they could get maximum capacity out of the system as a whole. I think I actually understood that!

Okay – something very exciting! The video mentioned above is the first I’ve seen of a British series called ‘Fully Charged’, all about batteries, EVs and renewable energy. I plan to watch the series for my education and for the thrill of it all. But imagine my surprise when I started watching this one, still part of the series, made here in Adelaide! I won’t go into the content of that video, which was about flow batteries which can store solar energy rather than transferring it to the grid. I need to bone up more on that technology before commenting, and it’s probably a bit pricey for the likes of me anyway. What was immediately interesting to me was how quickly he (Robert Llewellyn, the narrator/interviewer) cottoned on to our federal government’s extreme negativity regarding renewables. Glad to have that back-up! I note too, by the way, that Australia has no direct incentives to buy EVs, of which there are few in the country – again all due to our troglodyte government. It’s frankly embarrassing.

So, there’s so much happening with battery technology and its applications that I might need to take some time off to absorb all the videos and docos and blogs and podcasts and development plans and government directives and projects and whatnot that are coming out all the time from the usual and some quite unusual places, not to mention our own local South Australian activities and the naysayers buzzing around them. Then again I may be moved to charge forward and report on some half-digested new development or announcement tomorrow, who knows….

References

They’re all in the links above, and I highly recommend the British ‘Fully Charged’ videos produced by Robert Llewellyn and Johnny Smith, and the USA ‘jehugarcia’ videos, which, like the Brit ones but in a different way, are a lot of fun as well as educational.