Tag Archives: energy

is bioenergy a viable future option?

I haven’t investigated this issue before, and my general uninformed view as I begin this post is that producing fuel somehow from plants when we’re already having problems with over-use of land, and maintaining biodiversity, seems like a solution which will likely cause further problems downstream.

This general view I’ve found well expressed in an article published in The Guardian and on the World Resources Institute website in late January 2015, nearly seven years ago now. Were the authors correct then, and has anything changed since?

The 2015 article argues for solar energy as a more efficient use of sunlight, which, essentially is what bioenergy also uses. However, there are problems with getting energy generated from the sun, in, say, the Sahara Desert, to regions of high demand in Europe. And there may be ways of harnessing bioenergy without excessive land use. An article published in Nature Sustainability at the beginning of this year (2021) suggests, in its abstract, that:

growing perennial grasses on recently abandoned cropland is a near-term strategy for gradual bioenergy deployment with reduced risks for food security and the environment

The full article is behind a pay-wall, and I’m poor and cheap, but the authors appear to be arguing that a fair amount of bioenergy potential, measured in exajoules (that’s a ginormous number of joules) can be tapped from abandoned cropland, and from increasing areas of potential cropland, without affecting biodiversity or utilising essential water resources.

None of this suggests that bioenergy has major potential for an immediate future that looks increasingly dire. Saul Griffith, an Australian scientist, inventor and entrepreneur, spoke on the Climate One podcast (Electrify Everything, Oct 29 2021) about the situation.

There’ll be some geothermal; there’ll be some biofuels for some applications; there’ll be some hydroelectricity. But wind and solar are now proven to be the cheapest generators of electricity in the world.

The International Energy Agency (IEA) has an article from earlier this year about bioenergy, land, and the net-zero-emissions-by-2050 target. This is a new area for me, so I was interested in the quoted fact that, currently, some 40% of bioenergy supply (about 25 exajoules) is from solid biomass (wood, and waste materials). This is a traditional use, mostly for cooking, ‘which is inefficient, often linked to deforestation, and whose pollution was responsible for 2.5 million premature deaths in 2020’. The aim is to reduce this type of fuel to zero by 2030 – which does sound optimistic.

The plan, or hope, is to transfer to and control a sustainable bioenergy supply as part of a transformed energy economy. This energy, IEA reckons, will be divided into solid bioenergy, biogas, liquid biofuels and bioenergy with carbon capture and storage. We’re talking 2050 here, and the IEA article writes about it in the present tense (a bit weird – for example ‘by 2050 almost half of liquid biofuel use is for aviation’). It projects that around 5% of our energy generation will come from bio, and that it will be ‘an important source of low-emissions flexibility to complement variable generation from solar PV and wind’. It will also be used in the paper and cement industries, to meet high temperature heat requirements not easily electrified, and in the early future to 2030 it will be used to replace ‘dirty’ biomass – for example, improved stoves. The IEA also appears to be talking up carbon capture and storage (CCS, or BECCS if you unite it with bioenergy), that somewhat vague technology which has yet to prove itself. I’ll have to write about that in future, to comprehend the process and to see if any progress has been made.

The IEA projects that the 2050 bioenergy supply (that 5% of total) will amount to around 100 exajoules. In its optimistic scenario, 60% of this supply will come from ‘sustainable waste streams’ which don’t require land use, compared to 20% currently. The idea appears to be that we will have come much closer to solving the current waste problem – from plastics to clothing  and various recyclables. Sorting and utilising will presumably be much more efficient, perhaps using advanced AI. There is also much talk of ‘advanced’ biofuels, presumably more efficient and energy dense. 

The controversial issue of utilising food crops and land for bioenergy is addressed, with a scenario that involves increased usage up to 2030, then gradually reducing to zero by 2050. Short-rotation woody crops (which are generally more productive of bioenergy) on marginal lands will largely replace them.

This emphasis on reclaimed land for bioenergy-producing short-rotation woodland makes me wonder about something outside of the IEA’s purview – the other life that such woodland might sustain, or not, as the case may be. What sort of birdlife, for example, would be attracted to such human-designed forests? A forest without birdlife would be an empty place indeed, but how would any bird fit into this human scenario? The IEA’s narrow focus thus becomes problematic when biodiversity issues are raised, but intercommunication on these issues should allow such woodland to be sustainable from a biodiversity perspective. 

 Another interesting usage in this IEA projection is the term ‘advanced’ . There will be ‘advanced’ biofuels by 2050, as well as ‘advanced’ short-rotation woody crops, and other such advances. In some respects, this is a reasonable assumption, but unforeseen consequences are unseen, after all. Still, the IEA are intent on collaboration with other stakeholders, including presumably spokespeople for those without a voice, such as all non-human species. Quite a large and varied sector. 

An article on ResearchGate from two years ago, ‘The Future of Bioenergy”, argues that land-intensive bioenergy may have uses in the short-term but is not a viable long-term option, due largely to the promise of other technologies. It quotes an earlier IEA study that finds that bioenergy has become an increasingly significant part of the current energy mix, a situation that’s likely to pertain for some time, but not so much for the long term. It also questions the viability of BECCS, which was promoted in an earlier IPCC paper. The problem with bioenergy, it seems, is that it may not be, and is unlikely to be, as green as its proven alternatives. There are, of course, major problems in applying green energy to aviation and to some heavy industries, and some current methods of biofuel production are hardly less harmful than those for conventional fuels. Land use is also an issue fraught with unforeseeables. But of course, researchers will continue their research, and new breakthroughs are always possible. Something to keep an eye on.

References

https://www.nature.com/articles/s41893-020-00680-5

https://www.climateone.org/audio/electrify-everything

https://www.iea.org/articles/what-does-net-zero-emissions-by-2050-mean-for-bioenergy-and-land-use

https://www.researchgate.net/publication/336740381_The_Future_of_Bioenergy

Advertisement

the battery, Snowy Hydro and other stuff

Let’s get back to batteries, clean energy and Australia. Here’s a bit of interesting news to smack our clean-energy-fearing Feds with – you know, Freudenberg, Morrison and co. The Tesla Big Battery successfully installed at the beginning of summer, and lampooned by the Feds, turns out to be doing a far better job than expected, and not just here in South Australia. Giles Parkinson reported on it in Renew Economy on December 19:

The Tesla big battery is having a big impact on Australia’s electricity market, far beyond the South Australia grid where it was expected to time shift a small amount of wind energy and provide network services and emergency back-up in case of a major problem.

Last Thursday, one of the biggest coal units in Australia, Loy Yang A 3, tripped without warning at 1.59am, with the sudden loss of 560MW and causing a slump in frequency on the network.

What happened next has stunned electricity industry insiders and given food for thought over the near to medium term future of the grid, such was the rapid response of the Tesla big battery to an event that happened nearly 1,000km away.

The Loy Yang brown coal fired power station is in south eastern Victoria, so why did South Australia’s pride and joy respond to a problem in our dirty-coal neighbouring state? It surely wouldn’t have been contracted to, or would it? Parkinson also speculates about this. Apparently, when a power station trips, there’s always another unit contracted to provide back-up, officially called FCAS (frequency control and ancillary services). In Loy Yang’s case it’s a coal generator in Gladstone, Queensland. This generator did respond to the problem, within seconds, but the Tesla BB beat it to the punch, responding within milliseconds. That’s an important point; the Tesla BB didn’t avert a blackout, it simply proved its worth, without being asked. And it has been doing so regularly since early December. It seems the Tesla BB has cornered the market for fast frequency control. Don’t hold your breath for the Feds to acknowledge this, but they will have taken note, unless they’re completely stupid. They’ll be finding some way to play it (or downplay it) politically.

As Parkinson notes in another article, the energy industry has been slow to respond, in terms of regulation and accommodation, to the deployment of battery systems and their rapid charge-discharge features. Currently, providing FCAS is financially rewarded, which may have to do with costs involved but the cost/reward relationship appears to be out of kilter. In any case, battery response is much more cost-effective and threatens the antiquated reward system. The AEMC is planning to review frequency control frameworks, but it’ll no doubt be a slow process.

This is an incredibly complex area, combining new, barely-understood (by me) technologies of generation and storage, and the transformation of long-standing energy economies, with a host of vested interests, subsidies and forward plans, but I intend to struggle towards enlightenment, as far as I can.

Neoen’s Hornsdale Wind Farm

Regardless of regulation and grid problems, renewable energy projects keep on popping up, or at least popping into my consciousness through my desultory reading (NY resolution: inform myself much more on what’s going on, here and elsewhere, in clean energy). For example, the Murra Warra wind farm’s first stage will have an output of 226MW,  which has already been sold to a consortium of Australian corporations including Telstra and ANZ. The farm is near Horsham in western Victoria, and will finally have a capacity of up to 429MW, making it one of the biggest in the Southern Hemisphere. And of course there are many other projects underway. Back in August, the Renewable Energy Index, a monthly account of the renewable energy sector, was launched. Its first publication, by Green Energy Markets, was a benchmark report for 2016-7, all very glossy and positive. The latest publication, the November index, shows that rooftop solar installations for that month broke the monthly record set in June 2012 when subsidies were twice to three times what they are today. The publication’s headline is that the 2020 RET will be exceeded and that there are ‘enough renewable energy projects now under development to deliver half of Australia’s electricity by 2030’. The Clean Energy Council, the peak body for Australian dean energy businesses, also produces an annual report, so it will be interesting to compare its 2017 version with the Renewable Energy Index.

Hydro is in fact the biggest clean energy provider, with 42.3% of the nation’s renewable energy according to the 2016 Clean Energy Australia Report. Wind, however, is the fastest growing provider. This brings me to a topic I’ve so far avoided: The $4 billion Snowy Hydro 2 scheme.

Here’s what I’m garnering from various experts. It’s a storage scheme and that’s all to the good. As a major project it will have a long lead time, and that’s not so good, especially considering the fast growing and relatively unpredictable future for energy storage. As a storage system it will be a peak load provider, so can’t be compared to the Hazelwood dirty coal station, which is a 24/7 base load supplier. There’s a lot of misinformation from the Feds about the benefits, eg to South Australia, which won’t benefit and doesn’t need it, it’s sorting its own problems very nicely thanks. There’s a question about using water as an electricity supplier, due to water shortages, climate change and the real possibility of more droughts in the future. There are also environmental considerations – the development is located in Kosciuszko National Park. There’s some doubt too about the 2000MW figure being touted by the Feds, an increase of 50% to the existing scheme. However, many of these experts, mostly academics, favour the scheme as a boost to renewable energy investment which should be applied along with the other renewables to transform the market. In saying this, most experts agree that there’s been a singular lack of leadership and common-sense consensus on dealing with this process of transformation. It has been left mostly to the states and private enterprise to provide the initiative.

 

on the explosion of battery research – part two, a bitsy presentation

(this is reblogged from the new ussr illustrated, first published August 1 2017)

This EV battery managed to run for 1200 kilometres on a single charge at an average of around 51 mph

Ok, in order to make myself fractionally knowledgable about this sort of stuff I find myself watching videos made by motor-mouthed super-geeks who regularly do blokes-and-sheds experiments with wires and circuits and volt-makers and resistors and things that go spark in the night, and I feel I’m taking a peek at an alternative universe that I’m not sure whether to wish I was born into, but I’ll try anyway to report on it all without sounding too swamped or stupefied by the detail.

However, before I go on, I must say that, since my interest in this stuff stems ultimately from my interest in developing cleaner as well as more efficient energy, and replacing fossil fuel as a principal energy source, I want to voice my suspicions about the Australian federal government’s attitude towards clean and renewable energy. This morning I heard Scott Morrison, our nation’s Treasurer, repeating the same deliberately misleading comments made recently by Josh Frydenberg (the nation’s energy minister, for Christ’s sake) about the Tesla battery, which is designed to provide back-up power as part of a six-point SA government plan which the feds are well aware of but are unwilling to say anything positive about – or anything at all. Morrison, Frydenberg and that other trail-blazing intellectual, Barnaby Joyce, our Deputy Prime Minister, have all been totally derisory of the planned battery, and their pointlessly negative comments have thrown the spotlight on something I’ve not sufficiently noticed before. This government, since the election of just over a year ago, has not had anything positive to say about clean energy. In fact it has never said anything at all on the subject, by deliberate policy I suspect. We know that our PM isn’t as stupid on clean energy as his ministers, but he’s obviously constrained by his conservative colleagues. It’s as if, like those mythical ostriches, they’re hoping the whole world of renewables will go away if they pay no attention to it.

Anyway, rather than be demoralised by these unfortunates, let’s explore the world of solutions.

As a tribute to those can-do, DIY geeky types I need to share a great video which proves you can run an electric vehicle on a single charge for well over 1000ks – theirs made it to 1200ks – 748 miles in that dear old US currency – averaging around 51 mph. It’s well worth a watch, though with all the interest there are no doubt other claimants to the record distance for a single charge. Anyway, you can’t help but admire these guys. Tesla, as the video shows, are still trying to make it to 1000ks, but that’s on a regular, commercial basis of course.

In this video, basically an interview with battery researcher and materials scientist Professor Peter Bruce at Oxford University, the subject was batteries as storage systems. These are the batteries you find in your smart phones and other devices, and in electric vehicles (EVs). They’ll also be important in the renewable energy future, for grid storage. You can pump electricity into these batteries and, through a chemical process that I’m still trying to get my head around, you can store it for later use. As Prof Bruce points out, the lithium-ion battery revolutionised the field by more or less doubling the energy density of batteries and making much recent portable electronics technology possible. This energy density feature is key – the Li-ion batteries can store more energy per unit mass and volume. Of course energy density isn’t the only variable they’re working on. Speed of charge, length of time (and/or amount of activity) between charging, number of discharge-recharge cycles per battery, safety and cost are all vitally important, but when we look at EVs and grid storage you’re looking at much larger scale batteries that can’t be simply upgraded or replaced every few months. So Bruce sees this as an advantage, in that recycling and re-using will be more of a feature of the new electrified age. Also, as very much a  scientist, Bruce is interested in how the rather sudden focus on battery storage reveals gaps in our knowledge which we didn’t really know we had – and this is how knowledge often progresses, when we find we have an urgent problem to solve and we need to look at the basics, the underlying mechanisms. For example, the key to Li-ion batteries is the lithium compound used, and whether you can get more lithium ions out of particular compounds, and/or get them to move more quickly between the electrodes to discharge and recharge the battery. This requires analysis and understanding at the fundamental, atomistic level. Also, current Li-ion batteries for portable devices generally use cobalt in the compound, which is too expensive for large-scale batteries. Iron, manganese and silicates are being looked at as cheaper alternatives. This is all new research – and he makes no mention of the work done by Goodenough, Braga et al.

In any case it’s fascinating how new problems lead to new solutions. The two most touted and developed forms of renewable energy – solar and wind – both have this major problem of intermittence. In the meantime, battery storage, for portable devices and EVs, has become a big thing, and now new developments are heating up the materials science field in an electrifying way, which will in turn hot up the EV and clean energy markets.

The video ended by neatly connecting with the geeky DIY video in showing how dumped, abandoned laptop batteries and other batteries had plenty of capacity left in them – more than 60% in many cases, which is more than useful for energy storage, so they were being harvested by PhD students for use in small-scale energy storage systems for developing countries. Great for LED lighting, which requires little power. The students were using an algorithm to get each battery in the system to discharge at different rates (since they all had different capacities or charge left in them) so they could get maximum capacity out of the system as a whole. I think I actually understood that!

Okay – something very exciting! The video mentioned above is the first I’ve seen of a British series called ‘Fully Charged’, all about batteries, EVs and renewable energy. I plan to watch the series for my education and for the thrill of it all. But imagine my surprise when I started watching this one, still part of the series, made here in Adelaide! I won’t go into the content of that video, which was about flow batteries which can store solar energy rather than transferring it to the grid. I need to bone up more on that technology before commenting, and it’s probably a bit pricey for the likes of me anyway. What was immediately interesting to me was how quickly he (Robert Llewellyn, the narrator/interviewer) cottoned on to our federal government’s extreme negativity regarding renewables. Glad to have that back-up! I note too, by the way, that Australia has no direct incentives to buy EVs, of which there are few in the country – again all due to our troglodyte government. It’s frankly embarrassing.

So, there’s so much happening with battery technology and its applications that I might need to take some time off to absorb all the videos and docos and blogs and podcasts and development plans and government directives and projects and whatnot that are coming out all the time from the usual and some quite unusual places, not to mention our own local South Australian activities and the naysayers buzzing around them. Then again I may be moved to charge forward and report on some half-digested new development or announcement tomorrow, who knows….

References

They’re all in the links above, and I highly recommend the British ‘Fully Charged’ videos produced by Robert Llewellyn and Johnny Smith, and the USA ‘jehugarcia’ videos, which, like the Brit ones but in a different way, are a lot of fun as well as educational.

 

on the explosion of battery research – part one, some basic electrical concepts, and something about solid state batteries…

(this is reblogged from the new ussr illustrated, first published July 29 2017)

just another type of battery technology not mentioned in this post

Okay I was going to write about gas prices in my next post but I’ve been side-tracked by the subject of batteries. Truth to tell, I’ve become mildly addicted to battery videos. So much seems to be happening in this field that it’s definitely affecting my neurotransmission.

Last post, I gave a brief overview of how lithium ion batteries work in general, and I made mention of the variety of materials used. What I’ve been learning over the past few days is that there’s an explosion of research into these materials as teams around the world compete to develop the next generation of batteries, sometimes called super-batteries just for added exhilaration. The key factors in the hunt for improvements are energy density (more energy for less volume), safety and cost.

To take an example, in this video describing one company’s production of lithium-ion batteries for electric and hybrid vehicles, four elements are mentioned – lithium, for the anode, a metallic oxide for the cathode, a dry solid polymer electrolyte and a metallic current collector. This is confusing. In other videos the current collectors are made from two different metals but there’s no mention of this here. Also in other videos, such as this one, the anode is made from layered graphite and the cathode is made from a lithium-based metallic oxide. More importantly, I was shocked to hear of the electrolyte material as I thought that solid electrolytes were still at the experimental stage. I’m on a steep and jagged learning curve. Fact is, I’ve had a mental block about electricity since high school science classes, and when I watch geeky home-made videos talking of volts, amps and watts I have no trouble thinking of Alessandro Volta, James Watt and André-Marie Ampère, but I have no idea of what these units actually measure. So I’m going to begin by explaining some basic concepts for my own sake.

Amps

Metals are different from other materials in that electrons, those negatively-charged sub-atomic particles that buzz around the nucleus, are able to move between atoms. The best metals in this regard, such as copper, are described as conductors. However, like-charged electrons repel each other so if you apply a force which pushes electrons in a particular direction, they will displace other electrons, creating a near-lightspeed flow which we call an electrical current. An amp is simply a measure of electron flow in a current, 1 ampere being 6.24 x 10¹8 (that’s the power of eighteen) per second. Two amps is twice that, and so on. This useful videoprovides info on a spectrum of currents, from the tiny ones in our mobile phone antennae to the very powerful ones in bolts of lightning. We use batteries to create this above-mentioned force. Connecting a battery to, say, a copper wire attached to a light bulb causes the current to flow to the bulb – a transfer of energy. Inserting a switch cuts off and reconnects the circuit. Fuses work in a similar way. Fuses are rated at a particular ampage, and if the current is too high, the fuse will melt, breaking the circuit. The battery’s negative electrode, or anode, drives the current, repelling electrons and creating a cascade effect through the wire, though I’m still not sure how that happens (perhaps I’ll find out when I look at voltage or something).

Volts

So, yes, volts are what push electrons around in an electric current. So a voltage source, such as a battery or an adjustable power supply, as in this video, produces a measurable force which applied to a conductor creates a current measurable in amps. The video also points out that voltage can be used as a signal, representing data – a whole other realm of technology. So to understand how voltage does what it does, we need to know what it is. It’s the product of a chemical reaction inside the battery, and it’s defined technically as a difference in electrical potential energy, per unit of charge, between two points. Potential energy is defined as ‘the potential to do work’, and that’s what a battery has. Energy – the ability to do work – is a scientific concept, which we measure in joules. A battery has electrical potential energy, as result of the chemical reactions going on inside it (or the potential chemical reactions? I’m not sure). A unit of charge is called a coulomb. One amp of current is equal to one coulomb of charge flowing per second. This is where it starts to get like electrickery for me, so I’ll quote directly from the video:

When we talk about electrical potential energy per unit of charge, we mean that a certain number of joules of energy are being transferred for every unit of charge that flows.

So apparently, with a 1.5 volt battery (and I note that’s your standard AA and AAA batteries), for every coulomb of charge that flows, 1.5 joules of energy are transferred. That is, 1.5 joules of chemical energy are being converted to electrical potential energy (I’m writing this but I don’t really get it). This is called ‘voltage’. So for every coulomb’s worth of electrons flowing, 1.5 joules of energy are produced and carried to the light bulb (or whatever), in that case producing light and heat. So the key is, one volt equals one joule per coulomb, four volts equals 4 joules per coulomb… Now, it’s a multiplication thing. In the adjustable power supply shown in the video, one volt (or joule per coulomb) produced 1.8 amps of current (1.8 coulombs per second). For every coulomb, a joule of energy is transferred, so in this case 1 x 1.8 joules of energy are being transferred every second. If the voltage is pushed up to two (2 joules per coulomb), it produces around 2 amps of current, so that’s 2 x 2 joules per second. Get it? So a 1.5 volt battery indicates that there’s a difference in electrical potential energy of 1.5 volts between the negative and positive terminals of the battery.

Watts

A watt is a unit of power, and it’s measured in joules per second. One watt equals one joule per second. So in the previous example, if 2 volts of pressure creates 2 amps of current, the result is that four watts of power are produced (voltage x current = power). So to produce a certain quantity of power, you can vary the voltage and the current, as long as the multiplied result is the same. For example, highly efficient LED lighting can draw more power from less voltage, and produces more light per watt (incandescent bulbs waste more energy in heat).

Ohms and Ohm’s law

The flow of electrons, the current, through a wire, may sometimes be too much to power a device safely, so we need a way to control the flow. We use resistors for this. In fact everything, including highly conductive copper, has resistance. The atoms in the copper vibrate slightly, hindering the flow and producing heat. Metals just happen to have less resistance than other materials. Resistance is measured in ohms (Ω). Less than one Ω would be a very low resistance. A mega-ohm (1 million Ω) would mean a very poor conductor. Using resistors with particular resistance values allows you to control the current flow. The mathematical relations between resistance, voltage and current are expressed in Ohm’s law, V = I x R, or R = V/I, or I = V/R (I being the current in amps). Thus, if you have a voltage (V) of 10, and you want to limit the current (I) to 10 milli-amps (10mA, or .01A), you would require a value for R of 1,000Ω. You can, of course, buy resistors of various values if you want to experiment with electrical circuitry, or for other reasons.

That’s enough about electricity in general for now, though I intend to continue to educate myself little by little on this vital subject. Let’s return now to the lithium-ion battery, which has so revolutionised modern technology. Its co-inventor, John Goodenough, in his nineties, has led a team which has apparently produced a new battery that is a great improvement on ole dendrite-ridden lithium-ion shite. These dendrites appear when the Li-ion batteries are charged too quickly. They’re strandy things that make their way through the liquid electrolyte and can cause a short-circuit. Goodenough has been working with Helena Braga, who has developed a solid glass electrolyte which has eliminated the dendrite problem. Further, they’ve replaced or at least modified the lithium metal oxide and the porous carbon electrodes with readily available sodium, and apparently they’re using much the same material for the cathode as the anode, which doesn’t make sense to many experts. Yet apparently it works, due to the use of glass, and only needs to be scaled up by industry, according to Braga. It promises to be cheaper, safer, faster-charging, more temperature-resistant and more energy dense than anything that has gone before. We’ll have to wait a while, though, to see what peer reviewers think, and how industry responds.

Now, I’ve just heard something about super-capacitors, which I suppose I’ll have to follow up on. And I’m betting there’re more surprises lurking in labs around the world…

 

What’s Weatherill’s plan for South Australia, and why do we have the highest power prices in the world? Oh, and I should mention Elon Musk here – might get me more hits

(this is reblogged from the new ussr illustrated, first published July 14 2017)

just a superhero pic to rope people in

I’ve written a few pieces on our electricity system here in SA, but I don’t really feel any wiser about it. Still, I’ll keep having a go.

We’ve become briefly famous because billionaire geek hero Elon Musk has promised to build a ginormous battery here. After we had our major blackout last September (for which we were again briefly famous), Musk tweeted or otherwise communicated that his Tesla company might be able to solve SA’s power problems. This brought on a few local geek-gasms, but we quickly forgot (or I did), not realising that our good government was working quietly behind the scenes to get Musk to commit to something real. In March this year, Musk was asked to submit a tender for the 100MW capacity battery, which is expected to be operational by the summer. He has recently won the tender, and has committed to constructing the battery in 100 days, at a cost of $50 million. If he’s unsuccessful within the time limit, we’ll get it for free.

There are many many South Australians who are very skeptical of this project, and the federal government is saying that the comparatively small capacity of the battery system will have minimal impact on the state’s ‘self-imposed’ problems. And yet – I’d be the first to say that I’m quite illiterate about this stuff, but if SA Premier Jay Weatherill’s claim is true that ‘battery storage is the future of our national energy market’, and if Musk’s company can build this facility quickly, then it’s surely possible that many batteries could be built like the one envisaged by Musk, each one bigger and cheaper than the last. Or have I just entered cloud cuckoo land? Isn’t that how technology tends to work?

In any case, the battery storage facility is designed to bring greater stability to the state’s power network, not to replace the system, so the comparisons made by Federal Energy Minister Josh Frydenberg are misleading, probably deliberately so. Frydenberg well knows, for example, that SA’s government has been working on other solutions too, effectively seeking to becoming independent of the eastern states in respect of its power system. In March, at the same time as he presented plans for Australia’s largest battery, Weatherill announced that a taxpayer-funded 250MW gas-fired power plant would be built. More recently, AGL, the State’s largest power producer and retailer, has announced  plans to build a 210MW gas-fired generator on Torrens Island, upgrading its already-existing system. AGL’s plan is to use reciprocating engines, which executive general manager Doug Jackson has identified as best suited to the SA market because of their ‘flexible efficient and cost-effective synchronous generation capability’. I heartily agree. It’s noteworthy that the AGL plan was co-presented by its managing director Andy Vesey and the SA Premier. They were at pains to point out that the government plans and the AGL plan were not in competition. So it does seem that the state government has made significant strides in ensuring our energy security, in spite of much carping from the Feds as well as local critics – check out some of the very nasty naysaying in the comments section of local journalist Nick Harmsen’s articles on the subject (much of it about the use of lithium ion batteries, which I might blog about later).

It’s also interesting that Harmsen himself, in an article written four months ago, cast serious doubt on the Tesla project going ahead, because, as far as he knew, tenders were already closed on the battery storage or ‘dispatchable renewables’ plan, and there were already a number of viable options on the table. So either the Tesla offer, when it came (and maybe it got in under the deadline unbeknown to Harmsen), was way more impressive than others, or the Tesla-Musk brand has bedazzled Weatherill and his cronies. It’s probably a combo of the two. Whatever, this news is something of a blow to local rivals. What is fascinating, though is how much energetic rivalry, or competition, there actually is in the storage and dispatchables field, in spite of the general negativity of the Federal government. It seems our centrist PM Malcolm Turnbull is at odds with his own government about this.

So enough about the Tesla-Neoen deal, and associated issues, which are mounting too fast for me to keep up with right now. I want to focus on pricing for the rest of this piece, because I have no understanding of why SA is now paying the world’s highest domestic electricity prices, as the media keeps telling us.

According to this Sydney Morning Herald article from nearly two years ago, which of course I can’t vouch for, Australia’s electricity bills are made up of three components: wholesale and retail prices, based on supply and demand (39% of cost); the cost of poles and wires (53%); and the cost of environmental policies (8%). The trio can be simplified as market, network and environmental costs. Market and network costs vary from state to state. The biggest cost, the poles and wires, is borne by all Australian consumers (at least all on the grid), as a result of a massive $45 billion upgrade between 2009 and 2014, due to expectations of a continuing rise in demand. Instead there’s been a fall, partly due to domestic solar but in large measure because of much tighter and more environmental building standards nationwide as part of the building boom. The SMH article concludes, a little unexpectedly, that the continuing rise in prices can only be due to retail price hikes, at least in the eastern states, because supply is steady and network costs, though high, are also steady.

A more recent article (December 2016) argues that a rising wholesale price, due to the closure of coal-fired power stations in SA and Victoria and higher gas prices, is largely responsible. Retail prices are higher now than when the carbon tax was in place in 2013.

This even recenter article from late March announces an inquiry by the Australian Competition and Consumer Commission (ACCC) into retail pricing of electricity, which unfortunately won’t be completed till June 30 2018, given its comprehensive nature. It also contains this telling titbit:

A report from the Grattan Institute released earlier in March found a decade of competition in the market had failed to deliver better deals for customers, with profit margins on electricity bills much higher than for many other industries.

However, another article published in March, and focusing on SA’s power prices in particular (it’s written by former SA essential services commissioner Richard Blandy), takes an opposing view:

Retailing costs are unlikely to be a source of rapidly rising electricity prices because they represent a small proportion of final prices to consumers and there is a high level of competition in this part of the electricity supply chain. Energy Watch shows that there are seven electricity retailers selling electricity to small businesses, and 12 electricity retailers selling electricity to households. Therefore, price rises at the retail level are likely to be cost-based.

Blandy’s article, which looks at transmission and distribution pricing, load shedding and the very complex issue of wholesale pricing and the National Energy Market (NEM), needs at least another blog post to do justice to. I’m thinking that I’ll have to read and write a lot more to make sense of it all.

Finally, the most recentest article of only a couple of weeks ago quotes Bruce Mountain, director of Carbon and Energy Markets, as saying that it’s not about renewables (SA isn’t much above the other states re pricing), it’s about weak government control over retailers (could there be collusion?). Meanwhile, politicians obfuscate, argue and try to score points about a costly energy system that’s failing Australian consumers.

I’ll be concentrating a lot on this multifaceted topic – energy sources, storage, batteries, pricing, markets, investment and the like, in the near future. It exercises me and I want to educate myself further about it. Next, I’ll make an effort to find out more about, and analyse, the South Australian government’s six-point plan for our energy future.

References and more reading for masochists

http://www.abc.net.au/news/2017-03-10/tesla-boss-elon-musk-pledges-to-fix-sas-electricity-woes/8344084

http://www.adelaidenow.com.au/business/sa-government-announces-who-will-build-100mw-giant-battery-as-part-of-its-energy-security-plan/news-story/9f83072547f41f4f5556477942168dd9

http://www.smh.com.au/business/sunday-explainer-why-is-electricity-so-expensive-20150925-gjvdrj.html

http://www.skynews.com.au/business/business/market/2017/03/27/accc-to-find-out-why-power-prices-are-so-high.html

http://www.adelaidenow.com.au/news/south-australia/south-australia-will-have-highest-power-prices-in-the-world-after-july-1-increases/news-story/876f9f6cefce23c62395085c6fe0fd9f

http://indaily.com.au/news/business/analysis/2017/03/07/why-sas-power-prices-are-so-high-and-the-huge-risks-of-potential-fixes/

http://www.theaustralian.com.au/opinion/columnists/graham-richardson/jay-weatherill-must-come-clean-on-elon-musks-battery-deal/news-story/f471b33ebdf140a71b41e0b0bea7894f

http://www.news.com.au/technology/environment/climate-change/why-higher-electricity-prices-are-inevitable/news-story/042712e35c08bf798ed993d13ee573ea