Category Archives: carbon emissions

a hydrogen energy industry in South Australia?

an artist’s impression of SA’s hydrogen power project

I recently received in the mail a brochure outlining SA Labor’s hydrogen energy jobs plan, ahead of the state election in March 2022. The conservatives are currently in power here. The plan involves building ‘a 200MW hydrogen fuelled power station to provide firming capacity in the South Australian Electricity Market’.

So, what does a ‘hydrogen fuelled power station’ entail, what is ‘firming capacity’ and what does 200MW mean?

A presumably USA site called energy.gov tells me this:

Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses, for portable power, and in many more applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources.

This raises more questions than answers, for me. I can understand that hydrogen is a clean fuel – after all, it’s the major constituent, molecularly speaking, of water, which is pretty clean stuff. But what exactly is meant by ‘clean’ here? Do they mean ‘carbon neutral’, one of today’s buzz terms? Presumably so, and obviously hydrogen doesn’t contain carbon. Next question, what exactly is a fuel cell? Wikipedia explains:

fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from metals and their ions or oxides that are commonly already present in the battery, except in flow batteries. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

So the planned 200 megawatt power station will use the chemical energy of hydrogen, and oxygen as an oxidising agent, to produce electricity through a pair of redox reactions. Paraphrasing another website, the electricity is produced by combining hydrogen and oxygen atoms. This causes a reaction across an electrochemical cell, which produces water, electricity, and some heat. The same website tells me that, as of October 2020, there were 161 fuel cells operating in the US with, in total, 250 megawatts of capacity. The planned SA power station will have 200 megawatts, so does that make it a gigantic fuel cell, or a fuel cell collective? In any case, it sounds ambitious. The process of extracting the hydrogen is called electrolysis, and the devices used are called electrolysers, which will be powered by solar energy. Excess solar will no longer need to be switched off remotely during times of low demand.

There’s no doubt that the fortunes of hydrogen as a clean fuel are on the rise. It’s also being considered more and more as a storage system to provide firming capacity – to firm up supply that intermittent power sources – solar and wind – can’t always provide. The completed facility should be able to store 3600 tonnes of hydrogen, amounting to about two months of supply. There are export opportunities too, with all this excess supply. Japan and South Korea are two likely markets.

While it may seem like all this depends on Labor winning state government, the local libs are not entirely averse to the idea. It has already installed the nation’s largest hydrogen electrolyser (small, though, at 1.25 MW) at the Tonsley technology hub, and the SA Energy Minister has been talking up the idea of a hydrogen revolution. The $11.4 million electrolyser, a kind of proof of concept, extracts hydrogen gas from water at a rate of up to 480 kgs per day.

The difference between the libs and labor it seems is really about who pays for the infrastructure. Unsurprisingly, the libs are looking to the private sector, while Labor’s plans are for a government-owned facility, with the emphasis on jobs. Their brochure on the planned power station and ancillary developments is called the ‘hydrogen jobs plan’. According to SA’s Labor leader, Peter Malinauskas, up to 300 jobs will be created in constructing the hydrogen plant, at least 10,000 jobs will be ‘unlocked from the $20bn pipeline of renewable projects in South Australia’ (presumably not all hydrogen-related, but thrown in for good measure) and 900+ jobs will be created through development of a hydrogen export industry. He’s being a tad optimistic, needless to say.

But hydrogen really is in the air these days (well, sort of, in the form of water vapour). A recent New Scientist article, ‘The hydrogen games’, reports that Japan is hoping that its coming Olympic and Paralympic Games (which others are hoping will be cancelled) will be a showcase for its plan to become a ‘hydrogen society’ over the next few decades. And this plan is definitely good news for Australia.

Japan has pledged to achieve net-zero greenhouse gas emissions by 2050. However, this is likely impossible to achieve by solar or other established renewables. There just isn’t enough available areas for large scale solar or wind, in spite of floating solar plants on its lakes and offshore wind farms in planning. This is a problem for its hydrogen plans too, as it currently needs to produce the hydrogen from natural gas. It hopes that future technology will make green hydrogen from local renewables possible, but meanwhile it’s looking to overseas imports, notably from Australia, ‘which has ample sunshine, wind and empty space that make it perfect for producing this fuel’. Unfortunately we also have an ample supply of empty heads in our federal government, which might get in the way of this plan. And the Carbon Club, as exposed by Marian Wilkinson in her book of that name, continues to be as cashed-up and almost thuggishly influential as ever here. The success of the South Australian plan, Labor or Liberal, and the growing global interest in hydrogen as an energy source – France and Germany are also spending big on hydrogen – may be what will finally weaken the grip of the fossil fuel industry on a country seen by everyone else as potentially the best-placed to take financial advantage of the green resources economy.

References

Hydrogen Jobs Plan: powering new jobs & industry (South Australian Labor brochure)

https://www.energy.gov/eere/fuelcells/hydrogen-fuel-basics

https://en.wikipedia.org/wiki/Fuel_cell

https://www.eia.gov/energyexplained/hydrogen/use-of-hydrogen.php

‘The hydrogen games’, New Scientist No 3336 May 2021 pp18-19

Marian Wilkinson: The Carbon Club: How a network of influential climate sceptics, politicians and business leaders fought to control Australia’s climate policy, 2020

https://www.abc.net.au/news/2021-03-23/hydrogen-power-play-in-sa-as-labor-announces-gas-plant-project/100022842

Advertisement

buildings that reduce energy consumption

average energy use in an Australian home, 2011

average energy use in an Australian home, 2011

The energy solutions world has obviously been given a big boost by the decisions in Paris recently, so all the more reason to analyse the success of changes to building designs, and how they can lead to lower emissions worldwide in the future. As I wrote last year, Australia has been consuming less electricity of late, a turnaround which is a historical first, and the main cause has been energy-efficient new buildings and appliances, regulated by government here, no doubt in conformity with other western regulatory systems. So what exactly have these changes been, and how far can we go in creating energy-efficient buildings?

In Australia, all new buildings must comply with the Building Code of Australia, which prescribes national energy efficiency requirements and here in South Australia the government has a comprehensive website outlining those requirements as well as, presumably, state additions. New buildings must achieve a six star rating, though concessions can be made in some circumstances. In South Australia, energy efficiency standards are tied to three distinct climate zones, but the essential particulars are that there should be measures to reduce heating and cooling loads, good all-round thermal insulation, good glazing, sealing and draught-proofing, good ventilation, effective insulation of piping and ductwork, energy efficient lighting and water heating, and usage of renewable energy such as solar.

SA has developed a strategic plan to improve the energy efficiency of dwellings by 15% by 2020, targeting such items as air-conditioners and water heaters, and in particular the energy efficiency of new buildings, as retro-fitting is often problematic. However, the state government reports success with the energy efficiency of its owned and leased buildings, which had improved by 23.8% in 2014, compared to 2001. They are on target for a 30% improvement by 2030.

But energy efficiency for new housing doesn’t end with the buildings themselves. The Bowden housing development, which is currently being constructed in my neighbourhood, aims to reduce energy consumption and emissions through integrated community living and facilities, green spaces, effective public transport and bikeways, convenient shopping, dining and entertainment, and parks and gardens for relaxation and exercise. It all sounds a bit like paradise, and I must admit that, as I grow older, the final picture is still a long from taking full shape, but as we move away from oil, upon which we still rely for transport, this kind of integrated community living could prove a major factor in reducing oil consumption. The national broadband system will of course play a role here, with more effective internet communication making it easier to conference nationally and internationally without consuming so much jet fuel. It’s probably fair to say that this is an area of great waste today, with large amounts of greenhouse gases being emitted for largely unnecessary international junkets.

Recently it was announced that the Tesla Powerwall, the new energy storage technology from Elon Musk’s company, will begin local installation in Australia, with the first installations happening this month (February 2016). There are other battery storage systems on offer too, so this is another burgeoning area in which residential and other buildings can be energy-efficient.

So we’re finally becoming smarter about these things, and it’s making measurable inroads into our overall energy consumption. Other strategies for lightening our environmental footprints include embodied energy and cogeneration. These are described on the Urban Ecology Australia website. Embodied energy is:

The energy expended to create and later remove a building can be minimised by constructing it from locally available, natural materials that are both durable and recyclable, and by designing it to be easy to dismantle, with components easy to recover and reuse.

And cogeneration is defined thus:

Cogeneration involves reusing the waste heat from electricity generation, thus consuming less fuel than would be needed to produce the electricity and heat separately.
Small, natural gas powered electricity generators in industrial or residential areas can supply heat for use by factories, office buildings, and household clusters.
The heat can be used for space heating, hot water, and to run absorption chillers for refrigeration and air-conditioning. It can be used in industry for chemical and biological processes.

Clearly there’s no over-arching technological fix for energy reduction, at least not in the offing, but there are a host of smarter solutions with a combinatorial effect. And governments everywhere can, and should, play a useful, example-setting role.

Australia ranks 10th of these 16 countries for energy efficiency. However, we're 16th for energy-efficient transport, so presumably we're further up the ladder for housing

Australia ranks 10th of these 16 countries for energy efficiency. However, we’re 16th for energy-efficient transport, so presumably we’re further up the ladder for housing

we need to support innovative design in renewables

Merkel tells Obama about the size of the problem (against a 'hey, the climate looks effing good to me' background)

Merkel tells Obama about the size of the problem (against a ‘hey, the climate looks effing good to me’ background)

Unfortunately Australia, or more accurately the Australian government, is rapidly reaching pariah status on the world stage with its inaction on carbon reduction and its clear commitment to the future of the fossil fuel industries, particularly coal. In a recent UN conference in Bonn, Peter Woolcott, a former Liberal Party apparatchik who was appointed our UN ambassador in 2010 and our ‘ambassador for the environment’, a new title, in November 2014, was asked some pointed questions regarding Australia’s commitment to renewable energy and combatting climate change. The government’s cuts to the renewable energy target, its abandonment of a price on carbon, and its weak emission reduction targets all came under fire from a number of more powerful nations. Interestingly, at the same time the coal industry, highly favoured by the Abbott government, is engaged in a battle, both here and on the international front, with its major rival, the oil and gas industry, which clearly regards itself as cleaner and greener. Peter Coleman, the CEO of Woodside Petroleum, has mocked ‘clean coal’ and claimed that natural gas is key to combatting climate change, while in Europe oil companies are calling for the phasing out of coal-powered plants in favour of their own products. In the face of this, the Abbott government has created a $5 billion investment fund for northern Australia, based largely on coal.

So, with minimal interest from the current federal government, the move away from fossil fuels, which will be a good thing for a whole variety of reasons, has to be directed by others. Some state governments, such as South Australia, have subsidised alternative forms of energy, particularly wind, and of course the rooftop solar market was kick-started by feed-in tariffs and rebates, since much reduced – and it should be noted that these subsidies have always been dwarfed by those paid to fossil fuel industries.

The current uptake of rooftop solar has understandably slowed but it’s still happening, together with moves away from the traditional grid to ‘distributed generation’. Two of the country’s major energy suppliers, Origin and AGL, are presenting a future based on renewables to their shareholders. Origin has plans to become the nation’s number one provider of rooftop solar. Currently we have about 1.4 million households on rooftop solar, with potential for about five million more.

Meanwhile, thanks in large part to the persuasive powers of German Chancellor Angela Merkel, who’s been a formidable crusader for alternative energy in recent years, Canada and Japan, both with conservative governments and a reluctance to commit to policies to combat global warming, have been dragged into an agreement on emission reductions. So the top-down pressure continues to build, while bottom-up ingenuity, coming from designers and innovators in far-flung parts of the world and shared with greater immediacy than ever before, is providing plenty of inspiration. Let me look at a couple of examples in the wield of wind power, taken initially from Diane Ackerman’s dazzling book The human age: the world shaped by us.

Recent remarks by Australia’s Treasurer, Joe Hockey, and then our Prime Minister, Tony Abbott, about the ‘ugliness’ of wind farms, together with the PM’s speculations about their negative health effects, give the impression of being orchestrated. Abbott, whose scientific imbecility can hardly be overstated, is naturally unaware that the National Health and Medical Research Council (NHMRC), the Australian government’s own body for presenting the best evidence-based information on health matters that might impact on the public, released two public papers on wind farms and human health in February 2015. Their conclusion, based on the best available international studies, is that there is no consistent evidence of adverse health effects, though they suggest, understandably, that considering public concerns, more high-quality research needs to be done.

the Windstalk concept

the Windstalk concept

As to the aesthetic issue, one has to wonder whether Hockey and Abbott really prefer the intoxicating beauty of coal-fired power stations. More importantly, are they opposed for aesthetic or other reasons to the very concept of harvesting energy from the wind? Because the now-traditional three blade wind turbine is far from being the only design available. One very unusual design was created by a New York firm, Atelier DNA, for the planned city of Masdar, near Abu Dhabi. It’s called Windstalk, and it’s based on a small forest of carbon fibre stalks each almost 60 metres high, which generate energy when they sway in the wind. They’re quieter than three-blade turbines and they’re less dangerous to birds and bats. As to the energy efficiency and long-term viability of the Windstalk concept, that’s still a matter for debate. There’s an interesting Reddit discussion about it here, where it’s also pointed out that the current technology is in fact very sophisticated in design and unlikely to be replaced except by something with proven superiority in all facets.

a wind wheel, using Ewicon technology

a wind wheel, using Ewicon technology

Still there are other concepts. The ‘Ewicon’ wind-converter takes harvesting the wind in a radically new direction, with bladeless turbines that produce energy using charged water droplets. The standard wind turbine captures the kinetic energy of the wind and converts it into the mechanical energy of the moving blades, which drives an electric generator. The Ewicon (which stands for electrostatic wind energy converter) is designed to jump the mechanical step and generate electricity directly from wind, through ‘the displacement of charged [water] particles by the wind in the opposite direction of an electrical field’. The UK’s Wired website has more detail. Still at the conceptual stage, the design needs more input to raise efficiency levels from a current 7% to more like the 20% plus level to be viable, but if these ideas can find needful government and corporate backing, this will result not only in greater and faster improvement of existing concepts, but a greater proliferation of innovative design solutions. 

nuclear power, part 2 – how it works

PressurizedWaterReactor

There are many tricky questions around nuclear power, and perhaps the most head-scratching one is, why did the most earth-quake prone country in the world embrace this technology so readily? The well-known environmental scientist Amory Lovins was just one to state the bleeding obvious with this remark: “An earthquake-and-tsunami zone crowded with 127 million people is an un-wise place for 54 reactors”. Combine this with a secretive governmental and industry approach to energy production in a cash-strapped economy, and disaster was almost inevitable. There were a number of earthquake-related shut-downs and cover-ups before the Fukushima disaster essentially blew the whistle on the whole industry, turning the majority of Japan’s population against nuclear power almost overnight. After Fukushima, the generation of nuclear power worldwide fell dramatically largely due to the shut-down of Japan’s 48 other nuclear power plants, though facilities in other countries were also affected by the publicity.

Yet it’s reasonable to ask whether other countries, such as Australia, should reject nuclear power outright because of Japan’s bad example. Australia rarely suffers serious earthquakes – South Australia almost never. And there may be safer ways to utilise nuclear fission as energy – now or in the near future – than has been employed in Japan or other countries since the sixties. So, just how do we generate nuclear power, how do we get rid of waste material, and are there any developments in the pipeline that will make generation and storage safer in the future?

How’s the energy produced?

Much of the following comes from How Stuff Works, but for my sake I’m putting it mostly into my own words. We derive energy from nuclear fission in the same way that we derive energy from coal-fired power stations – by turning water into pressurised steam, which drives a turbine generator. The difference, of course, is the source of the heat – uranium rather than carbon-emitting coal. Nuclear reactors create a chain reaction which splits uranium nuclei into radioactive elements, releasing energy in the process. A thorium fuel cycle rather than a uranium one is also possible, though with limited market potential at this point.

Uranium, in the form of isotope U-235, can undergo induced fission relatively easily. However, naturally occurring uranium is over 99% U-238, so the required uranium has to be enriched so that the U-235 content, which is naturally at around 0.7%, is increased to around 3% (weapons-grade uranium enrichment requires over 90% U-235). The enriched uranium is formed into pellets, each about 2.5 cms long and less than 2cms in diameter. These are arranged into bundles of long rods which are immersed in a pressure vessel of water. This is to prevent overheating and melting. Neutron-absorbing control rods are added to or subtracted from the uranium bundle, by raising or lowering, and these control the rate of fission. Completely lowering the control rods into the bundle will shut the reaction down.

The fissioning uranium bundle turns the water into steam, and then it’s just the technology of steam driving the turbine which drives the generator. But then there’s the matter of radio-activity…

Before we get into that, though, I should mention there are different kinds of reactors, which use different systems and different cooling agents. I’ve been rather cursorily describing a Light Water Reactor, the most common type. They use normal or regular water, and there are three varieties: pressurised water reactors, as described; boiling water reactors, and supercritical water reactors. There are also heavy water reactors which use water loaded with more of the heavier hydrogen isotope called deuterium. But whatever is used as a coolant and/or a neutron moderator (a medium that moderates the speed of neutrons, enabling them to sustain a chain reaction), the issue of radio-activity needs to be dealt with.

What are the safeguards against radioactive decay? 

What I previously termed ‘induced fission’ involves firing neutrons at U-235 nuclei. The nucleus absorbs the neutron and then becomes unstable and immediately splits, releasing a great deal of heat and gamma radiation from high energy photons. Among the products of the split are fissile neutrons, which then go on to split more nuclei, a chain reaction which can be controlled with the manipulation of control rods as described above. Uranium 235 and Plutonium 239 are among the very few fissile nuclei – those that lend themselves readily to nuclear chain reactions – that we know of.

The trouble with induced fission is that the products of the reaction are vastly more radioactive than the fissioned material, U-235, and their radioactive properties are long-lasting, leading to the obvious problems of safeguard, storage and elimination.

In standard light water reactors, the pressure vessel is housed in concrete, which is in turn housed in a steel containment vessel to protect the reactor core. Refuelling and maintenance equipment is housed within this vessel. Surrounding this we have a concrete building, a secondary containment structure to prevent leakage and to protect against earthquakes or other natural (or man-made) disasters. There was no such secondary structure at Chernobyl. The nuclear industry argues that, when these safeguards are properly maintained and monitored, a nuclear power plant releases less radioactivity into the atmosphere than a coal-fired power plant.

Even if this wins some people over, there are the really big issues of mining and transportation of uranium and nuclear fuel and storage of radioactive waste. According to the USA’s Nuclear Energy Institute, 2000 metric tons of high-level radioactive waste are produced annually by the world’s nuclear reactors, which is hazardous to all life forms and can’t be easily contained. This radioactive material takes tens of thousands of years to decay. Low-level waste, which contaminates nuclear plants and equipment, can take centuries to reach safe levels.

Storage, or possible recycling, of waste is probably the major issue for the nuclear power industry’s future, in spite of all the understandable current attention given to melt-downs. The How Stuff Works website summarises the present situation:

Currently, the nuclear industry lets waste cool for years before mixing it with glass and storing it in massive cooled, concrete structures. This waste has to be maintained, monitored and guarded to prevent the materials from falling into the wrong hands. All of these services and added materials cost money — on top of the high costs required to build a plant.

In my next, and hopefully last, post on this subject (for a while at least), I’ll focus more on this storage issue, and on other developments in nuclear fuel, such as they are. I’ll be relying particularly on the MIT interdisciplinary study ‘The Future of the Nuclear Fuel Cycle’, which came out in 2011 – just when the Fukushima-Daiichi disaster hit the headlines…  

energy solutions: nuclear power, part one – the problematic past

 

jordan-nuclear-energy-protest2    images

Here in South Australia, our Premier (the leader of the government) has recently announced a major inquiry into the viability of nuclear power for the state, and this is raising a few eyebrows and bringing on a few fevered discussions. The Greens are saying, what need for that old and dangerous technology when we have the prefect solution in renewables? Many scientists are arguing that all options should be on the table, and that our energy future should be flexible with many different technologies in the mix – solar, wind, geothermal but also perhaps clean coal (if that’s not an oxymoron), a new-look nuclear technology, and maybe even a technology of the future, such as fusion – not to mention the harnessing of anti-matter, mentioned to me recently by an enthusiastic 12-year-old.

South Australia already has a great rep for adopting new technologies. According to wind energy advocate Simon Holmes a Court, in a talk podcasted by The Science Show recently, SA gets more than 30% of its energy from wind, and some 5% from solar. If SA was a country, it would be at the top of the table for wind power use, a fact which certainly blew me away when I heard it.

Of course, South Australia also has a lot of uranium, a fact which has presumably influenced our young Premier’s thinking on nuclear energy. I recall being part of the movement against nuclear energy in the eighties, and reading at least one book about the potential hazards, the catastrophic effects of meltdowns, the impossibility of safe storage of nuclear waste and so forth, but I’ve also been aware in recent years of new safer types of fuel rods, cooling systems and the like, without having really focused on these developments. So now’s the time to do so.

But first I’m going to focus on the nuclear power industry’s troubled past, which will help to understand the passion of those opposed to it.

No doubt there have been a number of incidents and close things associated with the industry, but the general public are mostly aware of three disturbing events, Three Mile Island (1979), Chernobyl (1986), and Fukushima (2011). I won’t go into too much detail about these, as you’ll find plenty of information about them here, here and here, and in the links attached to those sites, but here’s a very brief summary.

The Three Mile Island accident was the result of a number of system and human failures, which certainly raised questions about complex systems and the possibility/inevitability of an accident occurring, but the real controversy was about the effects, or after-effects, of the partial melt-down. It’s inevitable that anti-nuclear activists would play up the impact, and nuclear proponents would play them down, but the evidence does suggest that, for all the publicity the accident garnered, the effects on the health of workers and residents of the area were minor and, where strongly claimed, largely unsubstantiated. Anti-nuclear activists have claimed widespread death and disease among animals and livestock in the region, while the local (Pennsylvania) Department of Agriculture denied any link. Research is still ongoing, but with so much heat being generated it’s hard to make sense of any light. One thing is certain, though. When an accident does happen, the costs of a clean-up, one that will satisfy everyone, including many of the nay-sayers, is astronomical.

Two reactors were built at the Three Mile Island site in 1974, and they were state-of-the art at the time. The second reactor, TMI-2, was destroyed by the accident, but TMI-1 is still functioning, and ‘remains one of the best-performing units in USA’, according to the World Nuclear Association, which, unsurprisingly, claims that ‘there were no injuries or adverse health effects from the accident’.

A much more serious accident occurred at Chernobyl in the Ukraine, then part of the Soviet Union. It has received a level 7 classification on the International Nuclear Event Scale, the highest possible classification (Fukushima is the only other accident with this classification; Three Mile Island was classified level 5). Thirty-one people died as a direct result, and long-term radiation effects are still under investigation. The figures on cancer-related deaths are enormously varied, not necessarily due to ideological thinking, but due to different methodologies employed by different agencies in different studies. The difficulties in distinguishing the thousands of cancers resulting from the radiation and the millions of cancers suffered by people in the region over the 20 years since the accident can hardly be underestimated. Most analysts agree, however that the human death toll is well into the thousands.

The Chernobyl disaster is notorious, of course, for the response of the Soviet government. No announcement was made to the general public until two days afterwards. When it came, it was as brief as possible. Workers and emergency services personnel who attempted to extinguish the fire were exposed to very high (that’s to say fatal) levels of radiation. Others involved in the massive clean-up were also heavily exposed. The cost of the clean-up, and of building a new containment structure (the largest civil engineering task in history) amounted to some 18 billion roubles. A half a million workers were involved.

The Fukushima disaster was caused by a tsunami triggered by a 9 magnitude earthquake, and the destruction caused (a meltdown of 3 of 6 of the plant’s reactors and the consequent release of radioactive material) was complicated by the damage from the tsunami itself. It was a disaster waiting to happen, for a number of reasons, the most obvious of which was the location of the reactors in the Pacific Rim, the most active seismic area on the planet. Some of the older reactors were not designed to withstand more than magnitude 7 or 8 quakes, but the most significant design failure, as it turned out, was a gross under-estimate of the height required for the sea-wall, the fundamental protection against tsunamis. To read about the levels of complacency, the unheeded warnings, the degree of ‘regulatory capture’ (where the regulators are mostly superannuated nuclear industry heavyweights with vested interests in downplaying problems and overlooking failures) and the outright corruption within and between TEPCO (the Tokyo Electric Power Company) and government, is to be alerted to a whole new perspective on human folly. It is also to be convinced that, if the industry is to have any future whatsoever, tight regulation, sensible, scientific and long-term decision-making, and complete openness to scrutiny by the residents of the area, consumers and the general public must be paramount.

Though there’s ongoing debate about the number of fatalities and injuries caused by the nuclear power industry, that number is lower than the numbers (also hotly debated of course) caused by other major energy-generating industries. Commercial nuclear power plants were first built in the early seventies and 31 countries have taken up the technology. There are now more than 400 operational reactors worldwide. The Fukushima disaster has naturally dampened enthusiasm for the technology; Germany has decided to close all its reactors by 2020, and Italy has banned nuclear power outright. However, countries such as China, whose government is rather more shielded against public opinion, are continuing apace – building almost half of the 68 reactors under construction worldwide as of 2012-13.

It’s probably fair to say that Fukushima and Chernobyl represent two outliers in terms of operating nuclear power plants, both in terms of accident prevention and crisis management, and the upside of these disasters is the many lessons learned. I presume modern reactors are built very differently from those of the seventies, So I’m interested to find out what those differences are and what ongoing innovations, if any, will make nuclear fission a safer and more viable clean energy option for the future. That’ll mean going into some technical detail, for my education’s sake, into how this energy-generating process works. So that’ll be next up, in part 2 of this series.

What is the future for renewable energy in Australia?

coffs-coast-climate_action-group-copyright-seenaustralia-001a-mv5y0v4cay562s49wi2_t460

It’s the energy of the future, according to its promoters. I’m talking about solar, wind and other sources of renewable energy. It seems, though, that due to ‘institutional dysfunction’, as one pundit describes it, renewable energy is facing a bleak future in Australia, at least in the short term.

Recently a review of the nation’s renewable energy target (RET), by a panel chosen by the Prime Minister’s office, has recommended substantially reducing the target. The panel was headed by a former chairman of Caltex Oil, Dick Warburton, who is unconvinced that increased carbon dioxide causes global warming. He’s wrong about that.

The RET is currently set at 41,000 gigawatts an hour of renewable energy by 2020, and it apparently represents a threat to the traditional energy companies at a time when electricity consumption is falling. As Ross Gittins points out in The Sydney Morning Herald, the fall in consumption over the last four years is unprecedented and has taken the industry completely by surprise.

So why has consumption fallen? According to an Australia Institute report by Dr Hugh Saddler, the decline has been entirely at the expense of coal-fired generators, many of which are struggling to be profitable. The main cause is simply an increase in energy-efficient buildings and appliances, due to regulations brought in in the late 90s. Other factors, in order of significance, include the economic shift from electricity-driven industry (with major steelworks, aluminium smelters and oil refineries, either shutting down or cutting back), the failure of many other electricity-guzzling industries to grow as expected, and, since 2010, consumer response to higher electricity prices and the carbon tax (either the real one or the slightly scarier one concocted by the conservatives in opposition). The price hikes, ironically, were largely a result of expenditure on upgraded poles and wires to meet expected new peaks in summer demand. The decreased residential usage provided intriguing proof that we can, if needs must, wean ourselves from ever-spiralling consumption. Meanwhile the increased capacity, for which consumers will continue to pay into the future, remains unused.

So what has this to do with renewable energy, and why does the Prime Minister’s panel recommend downgrading the RET? According to Peter Martin, the economics editor of The Age, it’s because the renewable energy sector has gotten too big for its boots and is significantly cutting into the profits of the fossil fuel industries. However, the repealing of the carbon tax was a big win for those industries, and the abandoning of the old RET, assuming the panel’s recommendations will be acted upon, will be another boost.

It looks like the federal government, probably under pressure from the fossil fuel lobby, is set to reduce or abandon the RET. The Warburton panel was set up in February by a Prime Minister who has stated at a public meeting that anthropogenic global warming is ‘bullshit’ (though he has tried to backpedal furiously from this since). The conservatives have chosen to ignore a review of the RET by the Climate Change Authority, released in December 2012. The Climate Change Authority was set up under the Gillard labor government in July 2012 to conduct climate change research and to regularly review associated policies, but the conservatives are trying to scrap it, though their first attempt was blocked in the Senate in March of this year, and the Authority now appears to be in limbo. It’s difficult not to conclude that the Warburton panel, which includes other industry heavyweights, has been set up to deliver the government what it wants.

So, bearing in mind the guidelines to problems and solutions I’ve taken from David Waltner-Toews, what exactly are the problems here, and how can we move towards solutions?

Not surprisingly, there’s more than one problem. For example, one problem is with the Warburton panel itself. The strong perception within the renewable energy sector and its potential investors is that the panel’s findings are already known, and that RET targets will be reduced or abandoned, leading to job losses and a substantial loss in investor confidence. In fact investors are already backing out because of the new climate of uncertainty.

Of course the panel isn’t bent on destruction. It presumably sees the problem elsewhere – a substantial decrease, at least domestically, in fossil fuel consumption. But why would anyone want to preserve a highly polluting industry when there are clean alternatives available? Well I can think of two reasons, apart from the obvious vested interests. First, job losses. The Greens and other clean energy advocates are heavily emphasising the job and investment losses in that market if the RET were to be abandoned, but of course the fall in consumption together with the challenge of the new technologies were leading to the same problems on the other side, and of course losses on one side can’t be simplistically balanced by gains on the other, and I’ve no idea how the actual numbers would fall out. Second, these industries aren’t simply limited to the domestic market. In fact the industry has long been heavily subsidised by the federal government because its exports are a major contributor to government revenues and to foreign exchange earnings. The government protection of the industry has of course been strongly criticised by the renewable energy sector, which is keen to point out that Australia is the highest per capita emitter of greenhouse gases in the world, with the fossil fuel industry playing the primary role in maintaining that record. But it’s difficult, especially for a conservative government with little obvious concern for the greenhouse issue, to see beyond the substantial revenues that coal and natural gas are bringing in.

Before we start talking solutions, we need to squarely face the evidence. Anthropogenic global warming is happening, and climate scientists are only in disagreement about rates and precise consequences in what is an enormously complex climate system. As just mentioned, Australians  have the worst per capita record in the world in contributing to the problem, and our coal industry produces about 38% of our total greenhouse gas emissions.

The aim should be to reduce our emissions while still providing all the energy required to maintain our lifestyles – though all the while being mindful that some tweaking of those lifestyles might substantially reduce emissions. We need to win the battle with government, as to the value and the necessity of emissions reduction, but we also need to be realistic. How much of our energy needs can be met by renewables, now and in the near future? Is it worth trying to clean up the fossil fuel industry? Is clean coal a possibility, or a myth?

On this latter issue, a US organisation, the Union of Concerned Scientists, has this to say:

Technology is evolving that has the potential to substantially reduce coal’s contribution to global warming by capturing carbon emissions before they are emitted. This technology could become an important part of the battle against global warming, but it remains to be seen whether it will work at a commercial scale and at what cost.

So here’s one weighty problem. We’re still heavily reliant on fossil fuels, though that reliance is reducing, as well as our overall energy usage. Reduced energy usage is seen as a problem rather than a victory, which may be a perception problem rather than a real problem, but it is a real problem insofar as the fossil fuel industry is losing revenue locally, which is affecting its ability to be competitive in the overseas market. Around 70% of Australia’s coal production is sent overseas, making Australia proportionally the world’s largest coal exporter. Coal is our second biggest export earner, worth more than $40 billion per annum.

Another problem is that we’re paying, into the future, for the new infrastructure above-mentioned. Arguably, we’re paying for the lack of foresight of the fossil fuel industry, which is passing on to the consumer the costs of an unnecessary extra capacity. Presumably if more consumers switch to solar for their domestic energy supply, this infrastructure cost burden will be shared among fewer people.

Also, those that want to reduce Australia’s carbon emissions through reduction of our fossil fuel production and exports have to counter the argument that our exports represent some 5% of global coal consumption, while the economic cost to us of cutting exports would be very substantial. It’s the ‘great pain for little gain’ argument.

There’s also another good point made by Chris Greig, Professor of Energy Strategy at the University of Queensland. We make the mistake, living as we do in an energy-rich nation, of assuming that our supply of coal is simply adding to the abundance, with disastrous consequences, but there are many parts of the world that are energy-poor, and would be deprived of opportunities to rise from poverty if the fuel supply from nations such as ours were to be cut off. By all means we should try to improve the efficiency of the fuel we export, and we should be looking to renewable alternatives in these energy-deprived regions, but some renewables are not suitable for some regions, and most cannot deliver base-load power as they currently stand. There are no easy solutions to this problem. Curently – and this returns me to my previous post – there’s a huge problem of indoor pollution in developing countries due to the lack of a clean, or cleaner, energy supply. Professor Greig effectively summarises the issue:

Few Australians realise that two million people in developing countries die each year due to indoor air pollution from biomass combustion – typically a black smoke containing fine particulates, carbon monoxide and nitrogen oxides. The indirect consequences are also far-reaching. The relentless harvesting of biomass wood for fuel is responsible for depleting groundwater systems and declining agricultural productivity, which in turn leads to food and water shortages and reinforces the poverty cycle. And let’s not forget the one billion tonnes of CO2 that are released annually as a result of this rudimentary burning of biomass materials.

All of this is further evidence of the complexity and messiness of the issues involved. Clearly they won’t be fully covered in this post, and I’ll be returning to the subject in the future, to look at nuclear power among other things. I’ve also got Naomi Klein’s monumental opus, This changes everything, a tale of climate change and capitalism, to plough through.

Meanwhile, the Australian situation with regard to renewables is still very much up in the air, with Federal Environment Minister now making assurances that the RET will not be scrapped, while not ruling out a downgrading. Climate Change Authority head Bernie Fraser, along with Business SA, suggest retaining the 41,000GWh target but extending the time-frame beyond 2020. This might help to maintain business investment while taking a little pressure off the fossil fuel industry, which might take the opportunity to review and improve future planning, with perhaps a greater focus on exports.

Whatever the future for all these businesses and technologies, the aim of a more sustainable, less carbon-intensive and less polluting energy supply should be paramount. If that means job losses as the dirtiest and least efficient power plants are closed, then that needs to be faced, unless they can be profitably cleaned up.

Having said that, Australia’s future lies in renewables, especially wind and solar. Our current government seems to be having trouble taking the long view on this, and it’s positively embarrassing to find a country that is in many areas among the most modern and technologically developed in the world falling behind so badly in a field we should be leading. I await with interest the government’s coming announcement on the RET. I’m sure they realise what’s at stake.