
GMG’s coin battery unveiled
So I’ve heard more exciting info recently from the Skeptics Guide to the Universe (SGU), this time returning me to Australia – Queensland more specifically. And some are describing this as the big battery technology breakthrough many of us have been waiting and hoping for.
So, lithium-ion batteries go back to the late sixties, though we can go back further to the twenties when it was noted that lithium’s electrochemical properties, such as low density, high specific capacity and low redox potential, would make it a likely battery anode material. I’m tempted to go into a thorough self-education investigation of how li-ion batteries were developed and how they work, but I’ll resist it and go straight to the new tech.
Graphene is an allotrope, or form, of carbon, as is diamond and various fullerenes. It consists of a single layer of atoms in a hexagonal lattice. Graphite, a very stable carbon allotrope, consists of stacked layers of graphene. The clean technology company Graphene Manufacturing Group (GMG), based in Queensland, manufactures graphene via a ‘proprietary production process’ which utilises natural gas (methane) rather than graphite. Its current principal focus, according to its website, is ‘developing applications for energy saving and energy storage solutions’. In its corporate overview, here’s what the company has to say on the battery front:
In the energy storage segment GMG and the University of Queensland are working collaboratively with financial support from the Australian Government to progress research and development, and ultimately explore the commercialization of GMG graphene aluminium-ion batteries. Aluminium-ion batteries have the potential to have better energy density than lithium-ion batteries. Graphene Aluminium-ion batteries may eliminate many disadvantages of LI Batteries, including the risk of overheating/fire and performance degradation. Management believes that successful commercialization of the Graphene Aluminium-ion batteries would result in a superior substitute to LI Batteries in targeted applications.
At this point they are promising longer battery life – up to 3 times – and very much faster charging – up to 60 times, something like a supercapacitor. There are no problems with overheating – lithium requires a cooling system, using more space and energy. They also describe the battery as ‘planet-friendly’, in that it doesn’t require scarce resources, such as lithium, which has become much more expensive recently. In fact, Australia is the world’s largest producer of bauxite ore, from which aluminium and gallium are extracted, so these batteries could put Australia in the box seat for production and manufacture. A ‘secure and simplified supply chain’ is one of the benefits touted by the company. Other benefits include safety (no catching fire), stability (no spontaneous discharge, i.e. energy leakage), and improved energy and power density. The batteries will have a longer lifespan, with many charge-discharge cycles. And at the end of the day they should be more recyclable. GMG also promises that these new batteries can be fitted within existing battery housing – no modifications required.
So how does the battery work? Here’s where I have to learn stuff. These are a class of rechargeable battery in which aluminium ions flow from the anode (the positive electrode) to the cathode and back. As to the cathode, I think that’s where graphene comes in. Based on breakthrough technology developed at the University of Queensland’s Australian Institute for Bioengineering and Nanotechnology, the battery cells ‘use nanotechnology to insert aluminium atoms inside tiny perforations in graphene planes’. Aluminium ions are trivalent, meaning they have three valent, or ‘free’, electrons to play with, compared to lithium’s one. This has had both benefits and disadvantages in the past. The three units of charge per ion means more energy density or storage capacity, but, according to Wikipedia, ‘the electrostatic intercalation of the host materials with a trivalent cation is too strong for well-defined electrochemical behaviour’. I don’t know what this means, but presumably this is the problem that the use of graphene solves.
Whether these new batteries will effectively replace li-ion batteries is a question. Established industries don’t move aside easily, and it’s likely that the new technology will be better for some applications than for others. Li-ion is not only well established, the technology is constantly improving. And nickel metal hydride, the previous form of rechargeable battery, still has its place, I believe.
Things are apparently moving fast. GMG CEO and Managing Director Craig Nicol said, “We are currently looking to bring coin cell commercial prototypes for customer testing in 6 months and a pouch pack commercial prototype – used in mobile phones, laptops etc. – for customer testing in 18 months. We are really excited about bringing this to market. We aim to have a viable graphene and coin cell battery production facility project after customer validation that we would likely build here in Australia”. According to the SGU the company expects to have EV batteries ready by 2024.
So that’s about it. But here’s some other random but relevant info:
Since 2005, lithium costs have increased nine-fold, while aluminium costs have increased by 20%.
Currently 90% of lithium is accessed from China, 10% from Chile – but I heard on Fully Charged that Australia is a major source of lithium, so I’m confused.
Basic ingredients of the new battery: ‘aluminum foil, aluminum chloride (the precursor to aluminium and it can be recycled), ionic liquid and urea’ (Craig Nicol)
From graphene-info.com: Now, GMG has shared the initial performance data when tested in coin cells for the patent-pending surface perforation of graphene in aluminium-ion batteries developed by the Company and the University of Queensland (“UQ”). Currently, GMG Graphene is producing coin cell prototypes for customer testing in Q4 2021.’
From Dr. Ashok Nanjundan, GMG’s Chief Scientific Officer: “This is a real game-changing technology which can offer a real alternative with an interchangeable battery technology for the existing lithium-ion batteries in almost every application with GMG’s Graphene and UQ’s patent-pending aluminium ion battery technology. The current nominal voltage of our batteries is 1.7 volts, and work is being carried out to increase the voltage to directly replace existing batteries and which lead to higher energy densities….. The real differentiator about these batteries is their very high power density of up to 7000 watts/kg, which endows them with a very high charge rate. Furthermore, graphene aluminium-ion batteries provide major benefits in terms of longer battery life (over 2000 charge / discharge cycles testing so far with no deterioration in performance), battery safety (very low fire potential) and lower environmental impact (more recyclable)”.
So, I’ll be following developments over the next few months and years…
References and links