Category Archives: renewable energy

on the explosion of battery research – part two, a bitsy presentation

(this is reblogged from the new ussr illustrated, first published August 1 2017)

This EV battery managed to run for 1200 kilometres on a single charge at an average of around 51 mph

Ok, in order to make myself fractionally knowledgable about this sort of stuff I find myself watching videos made by motor-mouthed super-geeks who regularly do blokes-and-sheds experiments with wires and circuits and volt-makers and resistors and things that go spark in the night, and I feel I’m taking a peek at an alternative universe that I’m not sure whether to wish I was born into, but I’ll try anyway to report on it all without sounding too swamped or stupefied by the detail.

However, before I go on, I must say that, since my interest in this stuff stems ultimately from my interest in developing cleaner as well as more efficient energy, and replacing fossil fuel as a principal energy source, I want to voice my suspicions about the Australian federal government’s attitude towards clean and renewable energy. This morning I heard Scott Morrison, our nation’s Treasurer, repeating the same deliberately misleading comments made recently by Josh Frydenberg (the nation’s energy minister, for Christ’s sake) about the Tesla battery, which is designed to provide back-up power as part of a six-point SA government plan which the feds are well aware of but are unwilling to say anything positive about – or anything at all. Morrison, Frydenberg and that other trail-blazing intellectual, Barnaby Joyce, our Deputy Prime Minister, have all been totally derisory of the planned battery, and their pointlessly negative comments have thrown the spotlight on something I’ve not sufficiently noticed before. This government, since the election of just over a year ago, has not had anything positive to say about clean energy. In fact it has never said anything at all on the subject, by deliberate policy I suspect. We know that our PM isn’t as stupid on clean energy as his ministers, but he’s obviously constrained by his conservative colleagues. It’s as if, like those mythical ostriches, they’re hoping the whole world of renewables will go away if they pay no attention to it.

Anyway, rather than be demoralised by these unfortunates, let’s explore the world of solutions.

As a tribute to those can-do, DIY geeky types I need to share a great video which proves you can run an electric vehicle on a single charge for well over 1000ks – theirs made it to 1200ks – 748 miles in that dear old US currency – averaging around 51 mph. It’s well worth a watch, though with all the interest there are no doubt other claimants to the record distance for a single charge. Anyway, you can’t help but admire these guys. Tesla, as the video shows, are still trying to make it to 1000ks, but that’s on a regular, commercial basis of course.

In this video, basically an interview with battery researcher and materials scientist Professor Peter Bruce at Oxford University, the subject was batteries as storage systems. These are the batteries you find in your smart phones and other devices, and in electric vehicles (EVs). They’ll also be important in the renewable energy future, for grid storage. You can pump electricity into these batteries and, through a chemical process that I’m still trying to get my head around, you can store it for later use. As Prof Bruce points out, the lithium-ion battery revolutionised the field by more or less doubling the energy density of batteries and making much recent portable electronics technology possible. This energy density feature is key – the Li-ion batteries can store more energy per unit mass and volume. Of course energy density isn’t the only variable they’re working on. Speed of charge, length of time (and/or amount of activity) between charging, number of discharge-recharge cycles per battery, safety and cost are all vitally important, but when we look at EVs and grid storage you’re looking at much larger scale batteries that can’t be simply upgraded or replaced every few months. So Bruce sees this as an advantage, in that recycling and re-using will be more of a feature of the new electrified age. Also, as very much a  scientist, Bruce is interested in how the rather sudden focus on battery storage reveals gaps in our knowledge which we didn’t really know we had – and this is how knowledge often progresses, when we find we have an urgent problem to solve and we need to look at the basics, the underlying mechanisms. For example, the key to Li-ion batteries is the lithium compound used, and whether you can get more lithium ions out of particular compounds, and/or get them to move more quickly between the electrodes to discharge and recharge the battery. This requires analysis and understanding at the fundamental, atomistic level. Also, current Li-ion batteries for portable devices generally use cobalt in the compound, which is too expensive for large-scale batteries. Iron, manganese and silicates are being looked at as cheaper alternatives. This is all new research – and he makes no mention of the work done by Goodenough, Braga et al.

In any case it’s fascinating how new problems lead to new solutions. The two most touted and developed forms of renewable energy – solar and wind – both have this major problem of intermittence. In the meantime, battery storage, for portable devices and EVs, has become a big thing, and now new developments are heating up the materials science field in an electrifying way, which will in turn hot up the EV and clean energy markets.

The video ended by neatly connecting with the geeky DIY video in showing how dumped, abandoned laptop batteries and other batteries had plenty of capacity left in them – more than 60% in many cases, which is more than useful for energy storage, so they were being harvested by PhD students for use in small-scale energy storage systems for developing countries. Great for LED lighting, which requires little power. The students were using an algorithm to get each battery in the system to discharge at different rates (since they all had different capacities or charge left in them) so they could get maximum capacity out of the system as a whole. I think I actually understood that!

Okay – something very exciting! The video mentioned above is the first I’ve seen of a British series called ‘Fully Charged’, all about batteries, EVs and renewable energy. I plan to watch the series for my education and for the thrill of it all. But imagine my surprise when I started watching this one, still part of the series, made here in Adelaide! I won’t go into the content of that video, which was about flow batteries which can store solar energy rather than transferring it to the grid. I need to bone up more on that technology before commenting, and it’s probably a bit pricey for the likes of me anyway. What was immediately interesting to me was how quickly he (Robert Llewellyn, the narrator/interviewer) cottoned on to our federal government’s extreme negativity regarding renewables. Glad to have that back-up! I note too, by the way, that Australia has no direct incentives to buy EVs, of which there are few in the country – again all due to our troglodyte government. It’s frankly embarrassing.

So, there’s so much happening with battery technology and its applications that I might need to take some time off to absorb all the videos and docos and blogs and podcasts and development plans and government directives and projects and whatnot that are coming out all the time from the usual and some quite unusual places, not to mention our own local South Australian activities and the naysayers buzzing around them. Then again I may be moved to charge forward and report on some half-digested new development or announcement tomorrow, who knows….

References

They’re all in the links above, and I highly recommend the British ‘Fully Charged’ videos produced by Robert Llewellyn and Johnny Smith, and the USA ‘jehugarcia’ videos, which, like the Brit ones but in a different way, are a lot of fun as well as educational.

 

Advertisement

How will the super-duper Tesla battery work? And more on the price of electricity

(this is reblogged from the new ussr illustrated, first published July 19 2017)

Image: Thermo Fisher Scientific Inc.

I received an email the other day from the Australia Insitute. I don’t know how that happened, I’ve never heard of the organisation. Apparently it’s Australia’s most influential progressive think-tank (self-described) and apparently I subscribed to it recently while in a barely conscious state. All good.

Anyway the topic was timely: ‘Rising Energy Bills: Blame Gas’.

In a very recent post I quoted from a few apparently reliable sources on the reason for South Australia’s very high electricity prices. Unfortunately there wasn’t too much agreement among them, though at least none of them blamed renewable energy. But neither did any of them blame gas, though one did point a finger at wholesale pricing. The Australia Institute’s email put it thus:

Yesterday, we released the latest Electricity Update of the National Energy Emissions Audit for July 2017. The report revealed a stunning correlation between domestic electricity prices and gas prices — particularly in South Australia — despite gas making up only 10 percent of electricity generation.

So this is a subject I need to return to – in my next post. This post will focus on batteries and storage.

Neoen, a French renewable energy company, is building a 315MW, 99 turbine wind farm near Jamestown in South Australia. Connected to this project will be an array of Tesla’s lithium ion Powerpack batteries. According to this ABC News article:

The array will be capable of an output of 100 megawatts (MW) of power at a time and the huge battery will be able to store 129 megawatt hours (MWh) of energy so, if used at full capacity, it would be able to provide its maximum output for more than an hour.

It will be a modular network, with each Powerpack about the size of a large fridge at 2.1 metres tall, 1.3m long and 0.8m wide. They weigh in at 1,200 kilograms each.

It will have just slightly more storage than the next biggest lithium battery, built by AES this year in southern California.

But Tesla’s 100 MW output would be more than three times larger than the AES battery and five times larger than anything Tesla has built previously.

I’m no electrochemist, but a nice scrutiny of these sentences identifies a clear distinction between output and storage. And the output of this planned battery is the pioneering aspect.

So here’s a very basic summary of how a rechargeable lithium ion battery works. Each battery (and they vary hugely in size) is made up of a number of cells, each a battery in itself. On opposite sides of the cell are conductive surfaces, aka current collectors, one of aluminium and the other of copper. Inside and joined to these surfaces are electrodes, the positive cathode and the negative anode. The cathode is made from a lithium metal oxide such as lithium cobalt oxide or lithium iron phosphate, which needs to have the purest, most uniform composition for maximum performance and longevity. The negative anode is made from graphite, a layered form of carbon. The layered structure allows the lithium ions (Li+) created by the current to be easily stored at and removed from the carbon surface. Between these electrodes, filling the cell, is an electrolyte fluid through which lithium ions flow from one electrode to the other, which charges and discharges the cell. Again the purity of this fluid is a vital factor (research is being done to come up with a form of solid electrolyte). Between the two electrodes is an insulating plastic separator, essential to keep the electrodes separate and prevent short-circuiting. This plastic membrane allows the lithium ions to pass through it. The battery is charged when the lithium ions have passed through the separator and become attached to and stored in the layered graphite of the anode. The battery is discharged by reversing the flow.

Lithium ion batteries are found not only in Tesla Powerpacks but generally in electric car batteries and many other devices such as my own iPhone and iPad. They’re lighter and have much less energy density than lead-acid batteries. The technology of lithium ion batteries is described in a number of useful online videos, of which the most comprehensive, I think, is a webinar from the American Chemistry Society (ACS), essentially an interview with Dee Strand, a lithium ion battery specialist and expert. Her talk also provides interesting ideas on how these types of batteries can be improved.

So a fully-charged cell has stored energy, and a discharging cell is producing output. There are variations in lithium ion battery technology, for example variations in the electrode materials, the electrolyte composition and the like, so we don’t know precisely what Tesla will be using for the South Australian battery system, but we have a fair idea.

In any case, there seems no obvious reason why this proven technology can’t be scaled up to meet the sort of need that was identified after last September’s state blackout. Now we just have to wait and see whether Musk will lose his bet regarding completion time come December.

Refs and info

http://www.tai.org.au/

http://www.abc.net.au/news/2017-07-07/what-is-tesla-big-sa-battery-and-how-will-it-work/8688992

https://www.thermofisher.com/content/dam/tfs/ATG/CMD/cmd-documents/sci-res/pub/comm/env/AR-Lithium-Ion-Battery-Degradation-RandD-Mag-042214.pdf

http://www.abc.net.au/news/2017-07-07/sa-to-get-worlds-biggest-lithium-ion-battery/8687268

Just type in ‘lithium ion battery’ in youtube

the SA government’s six-point plan for energy security, in the face of a carping Federal government

(this is reblogged from the new ussr illustrated, first published July 16 2017)

South Australian Premier Jay Weatherill, right, with SA Energy Minister Tom Koutsantonis

The South Australian government has a plan for energy, which you can take a look at here. And if you’re too lazy to click through, I’ll summarise:

  1. Battery storage and renewable technology fund: Now touted as the world’s largest battery, this will be a storage facility for wind and solar energy, and if it works, it will surely be a major breakthrough, global in its implications. The financing of the battery (if we have to pay for it!) will come from a new renewable energy fund.
  2. New state-owned gas power plant: This will be a 250 MW capacity gas powered facility designed initially for emergency use, and treated as a future strategic asset when (and if) greater energy stability is achieved at the national level. In the interim the state government will (try to?) work with transmission and distribution companies to provide 200 MW of extra generation in times of peak demand.
  3. Local powers over the national market: The government will legislate for strong new state powers for its Energy Minister as a last-resort measure to enable action in South Australia’s best interests when in conflict with the national market. In addition, all new electricity-generation projects above 5 MW will be assessed as to their input into the state electricity system and its security.
  4. New generation for more competition: The SA Government will use its own electricity contract (for powering schools, hospitals and government services) to tender for more new power generators, increasing competition in the market and putting downward pressure on prices.
  5. South Australian gas incentives: Government incentives will be given for locally-sourced gas development (we have vast untapped resources in the Cooper Basin apparently) so that we can replace all that dirty brown coal from Victoria.
  6. Energy Security Target: This new target, modelled by Frontier Economics, will be designed to encourage new investments in cleaner energy, to increase competition and put downward pressure on prices. The SA government will continue to advocate for an Emissions Intensity Scheme (EIS), contra the Federal government. It’s expected that the Energy Security Target will morph into an EIS over time – depending largely on supportive national policy. Such a scheme is widely supported by industry and climate science.

It’s an ambitious plan perhaps but it’s definitely a plan, and definitely actionable. The battery storage part is of course generating a lot of energy already, both positive and negative, as pioneering projects tend to do. I’m very much looking forward to December’s unveiling. Interestingly, in this article from April this year, SA Premier Jay Weatherill claimed 90 expressions of interest had been received for building the battery. Looks like they never stood a chance against the mighty Musk. In the same article, Weatherill announced that the expression of interest process had closed for the building of SA’s gas power plant, point two of the six-point plan. Thirty-one companies from around the world have vied for the project, apparently. And as to point three, the new powers legislation was expected to pass through parliament on April 26. Weatherill issued a press release on the legislation in late March. Thanks to parliamentary tracking, I’ve found that the bill – called the Bill to Amend the Emergency Management (Electricity Supply Emergencies) Act – was passed into law by the SA Governor on May 9.

Meanwhile, two regional projects, one in the Riverland and another in the north of SA, are well underway. A private company called Lyon Group is building a $1 billion battery and solar farm at Morgan, and another smaller facility, named Kingfisher, in the north. In this March 30 article by Chris Harmsen, a spokesperson for Lyon Group said the Riverland project, Australia’s largest solar farm, was 100% equity financed (I don’t know what that means – I’ll read this later) and would be under construction within months. It will provide 300MW of storage capacity. The 120 MW Kingfisher project will begin construction in September next year. Then there’s AGL’s 210MW gas-fired power station on Torrens Island, mentioned previously. It’s worth noting that AGL’s Managing Director Andy Vesey spoke of the positive investment climate created by the SA government’s energy plans.

So I think it’s fair to say that in SA we’re putting a lot of energy into energy. Meanwhile, the Federal Energy minister, Josh Frydenberg, never speaks positively about SA’s plans. Presumably this is because SA’s government is on the other side of the political divide. You can’t say anything positive about your political enemies because they might stop being your enemies, and then what would you do? The identity crisis would be intolerable.

I’ve written about macho adversarial systems in politics, law and industrial relations before. Frydenberg, as the Federal Minister, must be well aware of SA’s six-point plan (found with a couple of mouse-clicks), and of the plans and schemes of all the other state governments, otherwise he’d be massively derelict in his duty. Yet he’s pretty well entirely dismissive of the Tesla-Neoen deal, and describes the other SA initiatives, pathetically, as ‘an admission of failure’. It seems almost a rule with the current Feds that you don’t mention renewable, clean energy positively and you don’t mention the SA government’s initiatives in the energy field except negatively. Take for example Frydenberg’s reaction to recent news that the Feds are consulting with the car industry on reducing fuel emissions. He brought up the ‘carbon tax’ debacle (a reference to the former Gillard government’s 2012 carbon pricing scheme, repealed by the Abbott government in 2014), declaring that there would never be another one, as if the attempt to reduce vehicle emissions – carbon emissions – had nothing to do with carbon and its reduction, which was what the carbon pricing scheme was all about. This is the artificiality of adversarial systems – where two parties pretend to be further apart than they really are, so that they can engage in the apparently congenial activity of trading insults and holier-than-thou tirades. It’s so depressing. Frydenberg was at pains to point out that the government’s interest in reducing fuel emissions was purely to benefit family economies. It would’ve taken nothing but a bit of honesty and integrity to also say that reduced emissions would be environmentally beneficial. But this apparently would be a step too far.

In my next post I hope to get my head around battery storage technology, and lithium-ion batteries.

References/links

https://ussromantics.com/2017/07/14/whats-weatherills-plan-for-south-australia-and-why-do-we-have-the-highest-power-prices-in-the-world-oh-and-i-should-mention-elon-musk-here-might-get-me-more-hits/

https://ussromantics.com/2011/06/25/adversarial-approaches-do-we-need-them-or-do-we-need-to-get-over-them/

http://ourenergyplan.sa.gov.au/

http://www.abc.net.au/news/2017-04-13/sa-gas-fire-power-station-gains-international-interest/8442578

https://www.premier.sa.gov.au/index.php/jay-weatherill-news-releases/7263-new-legislation-puts-power-back-in-south-australians-hands

http://www.abc.net.au/news/2017-04-13/sa-gas-fire-power-station-gains-international-interest/8442578

https://www.parliament.sa.gov.au/Legislation/BillsMotions/SALT/Pages/default.aspx?SaltPageTypeId=2&SaltRecordTypeId=0&SaltRecordId=4096&SaltBillSection=0

http://www.abc.net.au/news/2017-03-30/new-solar-project-announced-for-sa-riverland/8400952

http://www.investopedia.com/terms/e/equityfinancing.asp

https://en.wikipedia.org/wiki/Carbon_pricing_in_Australia

 

What’s Weatherill’s plan for South Australia, and why do we have the highest power prices in the world? Oh, and I should mention Elon Musk here – might get me more hits

(this is reblogged from the new ussr illustrated, first published July 14 2017)

just a superhero pic to rope people in

I’ve written a few pieces on our electricity system here in SA, but I don’t really feel any wiser about it. Still, I’ll keep having a go.

We’ve become briefly famous because billionaire geek hero Elon Musk has promised to build a ginormous battery here. After we had our major blackout last September (for which we were again briefly famous), Musk tweeted or otherwise communicated that his Tesla company might be able to solve SA’s power problems. This brought on a few local geek-gasms, but we quickly forgot (or I did), not realising that our good government was working quietly behind the scenes to get Musk to commit to something real. In March this year, Musk was asked to submit a tender for the 100MW capacity battery, which is expected to be operational by the summer. He has recently won the tender, and has committed to constructing the battery in 100 days, at a cost of $50 million. If he’s unsuccessful within the time limit, we’ll get it for free.

There are many many South Australians who are very skeptical of this project, and the federal government is saying that the comparatively small capacity of the battery system will have minimal impact on the state’s ‘self-imposed’ problems. And yet – I’d be the first to say that I’m quite illiterate about this stuff, but if SA Premier Jay Weatherill’s claim is true that ‘battery storage is the future of our national energy market’, and if Musk’s company can build this facility quickly, then it’s surely possible that many batteries could be built like the one envisaged by Musk, each one bigger and cheaper than the last. Or have I just entered cloud cuckoo land? Isn’t that how technology tends to work?

In any case, the battery storage facility is designed to bring greater stability to the state’s power network, not to replace the system, so the comparisons made by Federal Energy Minister Josh Frydenberg are misleading, probably deliberately so. Frydenberg well knows, for example, that SA’s government has been working on other solutions too, effectively seeking to becoming independent of the eastern states in respect of its power system. In March, at the same time as he presented plans for Australia’s largest battery, Weatherill announced that a taxpayer-funded 250MW gas-fired power plant would be built. More recently, AGL, the State’s largest power producer and retailer, has announced  plans to build a 210MW gas-fired generator on Torrens Island, upgrading its already-existing system. AGL’s plan is to use reciprocating engines, which executive general manager Doug Jackson has identified as best suited to the SA market because of their ‘flexible efficient and cost-effective synchronous generation capability’. I heartily agree. It’s noteworthy that the AGL plan was co-presented by its managing director Andy Vesey and the SA Premier. They were at pains to point out that the government plans and the AGL plan were not in competition. So it does seem that the state government has made significant strides in ensuring our energy security, in spite of much carping from the Feds as well as local critics – check out some of the very nasty naysaying in the comments section of local journalist Nick Harmsen’s articles on the subject (much of it about the use of lithium ion batteries, which I might blog about later).

It’s also interesting that Harmsen himself, in an article written four months ago, cast serious doubt on the Tesla project going ahead, because, as far as he knew, tenders were already closed on the battery storage or ‘dispatchable renewables’ plan, and there were already a number of viable options on the table. So either the Tesla offer, when it came (and maybe it got in under the deadline unbeknown to Harmsen), was way more impressive than others, or the Tesla-Musk brand has bedazzled Weatherill and his cronies. It’s probably a combo of the two. Whatever, this news is something of a blow to local rivals. What is fascinating, though is how much energetic rivalry, or competition, there actually is in the storage and dispatchables field, in spite of the general negativity of the Federal government. It seems our centrist PM Malcolm Turnbull is at odds with his own government about this.

So enough about the Tesla-Neoen deal, and associated issues, which are mounting too fast for me to keep up with right now. I want to focus on pricing for the rest of this piece, because I have no understanding of why SA is now paying the world’s highest domestic electricity prices, as the media keeps telling us.

According to this Sydney Morning Herald article from nearly two years ago, which of course I can’t vouch for, Australia’s electricity bills are made up of three components: wholesale and retail prices, based on supply and demand (39% of cost); the cost of poles and wires (53%); and the cost of environmental policies (8%). The trio can be simplified as market, network and environmental costs. Market and network costs vary from state to state. The biggest cost, the poles and wires, is borne by all Australian consumers (at least all on the grid), as a result of a massive $45 billion upgrade between 2009 and 2014, due to expectations of a continuing rise in demand. Instead there’s been a fall, partly due to domestic solar but in large measure because of much tighter and more environmental building standards nationwide as part of the building boom. The SMH article concludes, a little unexpectedly, that the continuing rise in prices can only be due to retail price hikes, at least in the eastern states, because supply is steady and network costs, though high, are also steady.

A more recent article (December 2016) argues that a rising wholesale price, due to the closure of coal-fired power stations in SA and Victoria and higher gas prices, is largely responsible. Retail prices are higher now than when the carbon tax was in place in 2013.

This even recenter article from late March announces an inquiry by the Australian Competition and Consumer Commission (ACCC) into retail pricing of electricity, which unfortunately won’t be completed till June 30 2018, given its comprehensive nature. It also contains this telling titbit:

A report from the Grattan Institute released earlier in March found a decade of competition in the market had failed to deliver better deals for customers, with profit margins on electricity bills much higher than for many other industries.

However, another article published in March, and focusing on SA’s power prices in particular (it’s written by former SA essential services commissioner Richard Blandy), takes an opposing view:

Retailing costs are unlikely to be a source of rapidly rising electricity prices because they represent a small proportion of final prices to consumers and there is a high level of competition in this part of the electricity supply chain. Energy Watch shows that there are seven electricity retailers selling electricity to small businesses, and 12 electricity retailers selling electricity to households. Therefore, price rises at the retail level are likely to be cost-based.

Blandy’s article, which looks at transmission and distribution pricing, load shedding and the very complex issue of wholesale pricing and the National Energy Market (NEM), needs at least another blog post to do justice to. I’m thinking that I’ll have to read and write a lot more to make sense of it all.

Finally, the most recentest article of only a couple of weeks ago quotes Bruce Mountain, director of Carbon and Energy Markets, as saying that it’s not about renewables (SA isn’t much above the other states re pricing), it’s about weak government control over retailers (could there be collusion?). Meanwhile, politicians obfuscate, argue and try to score points about a costly energy system that’s failing Australian consumers.

I’ll be concentrating a lot on this multifaceted topic – energy sources, storage, batteries, pricing, markets, investment and the like, in the near future. It exercises me and I want to educate myself further about it. Next, I’ll make an effort to find out more about, and analyse, the South Australian government’s six-point plan for our energy future.

References and more reading for masochists

http://www.abc.net.au/news/2017-03-10/tesla-boss-elon-musk-pledges-to-fix-sas-electricity-woes/8344084

http://www.adelaidenow.com.au/business/sa-government-announces-who-will-build-100mw-giant-battery-as-part-of-its-energy-security-plan/news-story/9f83072547f41f4f5556477942168dd9

http://www.smh.com.au/business/sunday-explainer-why-is-electricity-so-expensive-20150925-gjvdrj.html

http://www.skynews.com.au/business/business/market/2017/03/27/accc-to-find-out-why-power-prices-are-so-high.html

http://www.adelaidenow.com.au/news/south-australia/south-australia-will-have-highest-power-prices-in-the-world-after-july-1-increases/news-story/876f9f6cefce23c62395085c6fe0fd9f

http://indaily.com.au/news/business/analysis/2017/03/07/why-sas-power-prices-are-so-high-and-the-huge-risks-of-potential-fixes/

http://www.theaustralian.com.au/opinion/columnists/graham-richardson/jay-weatherill-must-come-clean-on-elon-musks-battery-deal/news-story/f471b33ebdf140a71b41e0b0bea7894f

http://www.news.com.au/technology/environment/climate-change/why-higher-electricity-prices-are-inevitable/news-story/042712e35c08bf798ed993d13ee573ea

is wind power prohibitively expensive? apparently not

(this is reblogged from the new ussr illustrated, first published July 3 2017)

that’s a bloody big blade

Recently I heard retiring WA liberal senator Chris Back being interviewed, mainly on funding for Catholic schools, on ABC’s breakfast program. He was threatening to cross the floor on the Gonski package, but while he was at it he took a swipe at wind power, claiming it was heavily subsidised and not cost effective. Unfortunately I’ve not been able to find the whole interview online, to get his exact words, but as someone interested in renewables, and living in a state where wind power is prominent, I want to look more carefully at this issue.

On googling the question I’ve immediately been hit by link after link arguing that wind power is just too expensive. Is this a right-wing conspiracy? What are the facts? As I went deeper into the links – the second and third pages – I did become suspicious, as attacks on wind power spread to solar power and renewable energy in general. It seems there’s either a genuine backlash or there’s some manipulating going on. In any case it seems very difficult to get reliable, unbiased data one way or another on the cost-effectiveness of this energy source.

Of course, as with solar, I’m always hearing that wind power is getting cheaper. Thoughts off the top of my head: a standard wind farm of I don’t know how many units would be up-front quite expensive, though standardised, ready-tested designs will have brought per unit price down over the years. Maintenance costs, though, would be relatively cheap. And maybe with improved future design they could generate power at higher wind speeds than they do now. They seem to be good for servicing small towns and country regions. How they work with electricity grids is largely a mystery to me. There’s a problem with connecting them to other energy sources, and they’re not reliable enough (because the wind’s not reliable enough) to provide base-load power. I don’t know if there’s any chance of somehow storing excess energy generated. All of these issues would affect cost.

I also wonder, considering all the naysayers, why hard-headed governments, such as the Chinese, are so committed to this form of energy. Also, why has the government of Denmark, a pioneering nation in wind power, backed away from this resource recently, or has it? It’s so hard to find reliable sources on the true economics of wind power. Clearly, subsidies muddy the water, but this is true for all energy sources. It’s probably quixotic to talk about the ‘real cost’ of any of them.

Whatever the cost, businesses around the world are investing big-time in wind and other forms of renewable energy. In the US, after the bumbling boy-king’s highly telegraphed withdrawal from the Paris agreement, some 900 businesses and investors, including many of the country’s largest firms, signed a pledge to the UN that there were still ‘in’. The biggest multinational companies are not only jumping on the bandwagon, they’re fighting to drive it, creating in the process an unstoppable global renewable energy network.

The Economist, an American mag, had this to say in an article only recently:

In America the cost of procuring wind energy directly is almost as cheap as contracting to build a combined-cycle gas power plant, especially when subsidies are included…. In developing countries, such as India and parts of Latin America and the Middle East, unsubsidised prices at solar and wind auctions have fallen to record lows.

Australia’s current government, virtually under siege from its conservative faction, is having a hard time coming to terms with these developments, as Chris Back’s dismissive comments reveal, but the direction in which things are going vis-à-vis energy supply is clear enough. Now it’s very much a matter of gearing our electricity market to face these changes, as soon as possible. Without government support this is unlikely to happen, but our current government is more weakened by factionalism than ever.

Australia is 17th in the world for wind power, with a number of new wind farms becoming operational in the last year or so. South Australia’s push towards wind power in regional areas is well known, and the ACT is also developing wind power in its push towards 100% renewable energy by 2020. Australia’s Clean Energy Councilprovides this gloss on the wind energy sector which I hope is true:

Technological advances in the sector mean that wind turbines are now larger, more efficient and make use of intelligent technology. Rotor diameters and hub heights have increased to capture more energy per turbine. The maturing technology means that fewer turbines will be needed to produce the same energy, and wind farms will have increasingly sophisticated adaptive capability.

The US Department of Energy website has a factsheet – ‘top 10 things you didn’t know about wind power’, and its second fact is bluntly stated:

2. Wind energy is affordable. Wind prices for power contracts signed in 2015 and levelized wind prices (the price the utility pays to buy power from a wind farm) are as low as 2 cents per kilowatt-hour in some areas of the country. These rock-bottom prices are recorded by the Energy Department’s annual Wind Technologies Market Report.

As The Economist points out, in the article linked to above, Trump’s ignorant attitude to renewables and climate science will barely affect the US business world’s embrace of clean energy technology. I’m not sure how it works, but it seems that the US electricity system is less centralised than ours, so its states are less hampered by the dumbfuckery of its national leaders. If only….

solar technology keeps moving toward the centre

thin-film solar modules - a more flexible solution

thin-film solar modules – a more flexible solution

I’ve been hearing that the costs of solar installations are coming down, making the take-up easier and faster, but I haven’t spent the time to research exactly why this is happening, presumably world-wide. So now’s the time to do so. I thought I’d start with something I heard recently on a podcast about revolutionary thin solar cells…

Thin-film solar cells have been around for a while now, and they’re described well here. They’re only one micron thick, compared to traditional 350 microns-thick silicon-wafer cells, and they utilise superconductor materials, usually silicon-based, which are highly efficient absorbers of solar energy. However, according to Wikipedia, this new technology isn’t doing so well in the market-place, with only about 7% of market share, and not rising, though with crystalline silicon being replaced more and more by other materials (such as cadmium telluride, copper indium gallium selenide and amorphous silicon) there’s still hope for its future.

This technology was first utilised on a small scale in pocket calculators quite some time ago but it has been difficult to scale it up to the level of large-scale solar panels. There are problems with both stability and toxicity – cadmium for example is a poison that can accumulate in the food chain like mercury. It doesn’t look like it’s this or any other technological development that’s reducing costs or increasing efficiency, though of course they may do in the future, with graphene looking like a promising material.

So let’s return to the question of why solar has suddenly become much cheaper and is apparently set to get cheaper still. Large manufacturing investment and economies of scale seem to be a large part of the story. This means that the costs of solar modules now make up less than half of the total cost of what Ramez Naam calls ‘complete solar deployments at the utility scale’, and these other costs are also coming down as the industry ‘scales’. His article in Renew Economy from August last year makes projections based on the idea that ‘doubling of cumulative capacity tends to reduce prices by a predictable rate’, though he’s also prepared to heavily qualify such projections based on a multitude of possibly limiting factors. If all goes well, solar electricity costs will become less than half the cost of new coal or natural gas in a generation – without factoring in the climate costs of continuing fossil fuel usage. The extraordinary rise in solar energy usage in China, set to continue well into the future, bolsters the prediction, and India is also keen to incease usage, despite problems with domestic manufacturing and trade rules. Most panels are being imported from China and the USA, while domestic production struggles.

It’s interesting that solar and other renewable technologies are now being spruiked as mainstream by mainstream and even conservative sources, such as Fortune and oilprice.com. Fortune’s article also usefully points out how the cost of different power sources to the consumer is heavily dependent on government policies relating to fossil fuels and their alternatives, as well as to the natural assets of particular regions. Even so, it’s clear that the cost of fossil-fuel based electricity is rising everywhere while wind and solar electricity costs are falling, creating an increasingly clear-cut scenario for governments worldwide to deal with. Some governments are obviously facing it more squarely than others.

US residential solar costs. Beyond 2013, these are estimates, but already out of date it seems

US residential solar costs. Beyond 2013, these are estimates, but already out of date it seems

 

buildings that reduce energy consumption

average energy use in an Australian home, 2011

average energy use in an Australian home, 2011

The energy solutions world has obviously been given a big boost by the decisions in Paris recently, so all the more reason to analyse the success of changes to building designs, and how they can lead to lower emissions worldwide in the future. As I wrote last year, Australia has been consuming less electricity of late, a turnaround which is a historical first, and the main cause has been energy-efficient new buildings and appliances, regulated by government here, no doubt in conformity with other western regulatory systems. So what exactly have these changes been, and how far can we go in creating energy-efficient buildings?

In Australia, all new buildings must comply with the Building Code of Australia, which prescribes national energy efficiency requirements and here in South Australia the government has a comprehensive website outlining those requirements as well as, presumably, state additions. New buildings must achieve a six star rating, though concessions can be made in some circumstances. In South Australia, energy efficiency standards are tied to three distinct climate zones, but the essential particulars are that there should be measures to reduce heating and cooling loads, good all-round thermal insulation, good glazing, sealing and draught-proofing, good ventilation, effective insulation of piping and ductwork, energy efficient lighting and water heating, and usage of renewable energy such as solar.

SA has developed a strategic plan to improve the energy efficiency of dwellings by 15% by 2020, targeting such items as air-conditioners and water heaters, and in particular the energy efficiency of new buildings, as retro-fitting is often problematic. However, the state government reports success with the energy efficiency of its owned and leased buildings, which had improved by 23.8% in 2014, compared to 2001. They are on target for a 30% improvement by 2030.

But energy efficiency for new housing doesn’t end with the buildings themselves. The Bowden housing development, which is currently being constructed in my neighbourhood, aims to reduce energy consumption and emissions through integrated community living and facilities, green spaces, effective public transport and bikeways, convenient shopping, dining and entertainment, and parks and gardens for relaxation and exercise. It all sounds a bit like paradise, and I must admit that, as I grow older, the final picture is still a long from taking full shape, but as we move away from oil, upon which we still rely for transport, this kind of integrated community living could prove a major factor in reducing oil consumption. The national broadband system will of course play a role here, with more effective internet communication making it easier to conference nationally and internationally without consuming so much jet fuel. It’s probably fair to say that this is an area of great waste today, with large amounts of greenhouse gases being emitted for largely unnecessary international junkets.

Recently it was announced that the Tesla Powerwall, the new energy storage technology from Elon Musk’s company, will begin local installation in Australia, with the first installations happening this month (February 2016). There are other battery storage systems on offer too, so this is another burgeoning area in which residential and other buildings can be energy-efficient.

So we’re finally becoming smarter about these things, and it’s making measurable inroads into our overall energy consumption. Other strategies for lightening our environmental footprints include embodied energy and cogeneration. These are described on the Urban Ecology Australia website. Embodied energy is:

The energy expended to create and later remove a building can be minimised by constructing it from locally available, natural materials that are both durable and recyclable, and by designing it to be easy to dismantle, with components easy to recover and reuse.

And cogeneration is defined thus:

Cogeneration involves reusing the waste heat from electricity generation, thus consuming less fuel than would be needed to produce the electricity and heat separately.
Small, natural gas powered electricity generators in industrial or residential areas can supply heat for use by factories, office buildings, and household clusters.
The heat can be used for space heating, hot water, and to run absorption chillers for refrigeration and air-conditioning. It can be used in industry for chemical and biological processes.

Clearly there’s no over-arching technological fix for energy reduction, at least not in the offing, but there are a host of smarter solutions with a combinatorial effect. And governments everywhere can, and should, play a useful, example-setting role.

Australia ranks 10th of these 16 countries for energy efficiency. However, we're 16th for energy-efficient transport, so presumably we're further up the ladder for housing

Australia ranks 10th of these 16 countries for energy efficiency. However, we’re 16th for energy-efficient transport, so presumably we’re further up the ladder for housing

we need to support innovative design in renewables

Merkel tells Obama about the size of the problem (against a 'hey, the climate looks effing good to me' background)

Merkel tells Obama about the size of the problem (against a ‘hey, the climate looks effing good to me’ background)

Unfortunately Australia, or more accurately the Australian government, is rapidly reaching pariah status on the world stage with its inaction on carbon reduction and its clear commitment to the future of the fossil fuel industries, particularly coal. In a recent UN conference in Bonn, Peter Woolcott, a former Liberal Party apparatchik who was appointed our UN ambassador in 2010 and our ‘ambassador for the environment’, a new title, in November 2014, was asked some pointed questions regarding Australia’s commitment to renewable energy and combatting climate change. The government’s cuts to the renewable energy target, its abandonment of a price on carbon, and its weak emission reduction targets all came under fire from a number of more powerful nations. Interestingly, at the same time the coal industry, highly favoured by the Abbott government, is engaged in a battle, both here and on the international front, with its major rival, the oil and gas industry, which clearly regards itself as cleaner and greener. Peter Coleman, the CEO of Woodside Petroleum, has mocked ‘clean coal’ and claimed that natural gas is key to combatting climate change, while in Europe oil companies are calling for the phasing out of coal-powered plants in favour of their own products. In the face of this, the Abbott government has created a $5 billion investment fund for northern Australia, based largely on coal.

So, with minimal interest from the current federal government, the move away from fossil fuels, which will be a good thing for a whole variety of reasons, has to be directed by others. Some state governments, such as South Australia, have subsidised alternative forms of energy, particularly wind, and of course the rooftop solar market was kick-started by feed-in tariffs and rebates, since much reduced – and it should be noted that these subsidies have always been dwarfed by those paid to fossil fuel industries.

The current uptake of rooftop solar has understandably slowed but it’s still happening, together with moves away from the traditional grid to ‘distributed generation’. Two of the country’s major energy suppliers, Origin and AGL, are presenting a future based on renewables to their shareholders. Origin has plans to become the nation’s number one provider of rooftop solar. Currently we have about 1.4 million households on rooftop solar, with potential for about five million more.

Meanwhile, thanks in large part to the persuasive powers of German Chancellor Angela Merkel, who’s been a formidable crusader for alternative energy in recent years, Canada and Japan, both with conservative governments and a reluctance to commit to policies to combat global warming, have been dragged into an agreement on emission reductions. So the top-down pressure continues to build, while bottom-up ingenuity, coming from designers and innovators in far-flung parts of the world and shared with greater immediacy than ever before, is providing plenty of inspiration. Let me look at a couple of examples in the wield of wind power, taken initially from Diane Ackerman’s dazzling book The human age: the world shaped by us.

Recent remarks by Australia’s Treasurer, Joe Hockey, and then our Prime Minister, Tony Abbott, about the ‘ugliness’ of wind farms, together with the PM’s speculations about their negative health effects, give the impression of being orchestrated. Abbott, whose scientific imbecility can hardly be overstated, is naturally unaware that the National Health and Medical Research Council (NHMRC), the Australian government’s own body for presenting the best evidence-based information on health matters that might impact on the public, released two public papers on wind farms and human health in February 2015. Their conclusion, based on the best available international studies, is that there is no consistent evidence of adverse health effects, though they suggest, understandably, that considering public concerns, more high-quality research needs to be done.

the Windstalk concept

the Windstalk concept

As to the aesthetic issue, one has to wonder whether Hockey and Abbott really prefer the intoxicating beauty of coal-fired power stations. More importantly, are they opposed for aesthetic or other reasons to the very concept of harvesting energy from the wind? Because the now-traditional three blade wind turbine is far from being the only design available. One very unusual design was created by a New York firm, Atelier DNA, for the planned city of Masdar, near Abu Dhabi. It’s called Windstalk, and it’s based on a small forest of carbon fibre stalks each almost 60 metres high, which generate energy when they sway in the wind. They’re quieter than three-blade turbines and they’re less dangerous to birds and bats. As to the energy efficiency and long-term viability of the Windstalk concept, that’s still a matter for debate. There’s an interesting Reddit discussion about it here, where it’s also pointed out that the current technology is in fact very sophisticated in design and unlikely to be replaced except by something with proven superiority in all facets.

a wind wheel, using Ewicon technology

a wind wheel, using Ewicon technology

Still there are other concepts. The ‘Ewicon’ wind-converter takes harvesting the wind in a radically new direction, with bladeless turbines that produce energy using charged water droplets. The standard wind turbine captures the kinetic energy of the wind and converts it into the mechanical energy of the moving blades, which drives an electric generator. The Ewicon (which stands for electrostatic wind energy converter) is designed to jump the mechanical step and generate electricity directly from wind, through ‘the displacement of charged [water] particles by the wind in the opposite direction of an electrical field’. The UK’s Wired website has more detail. Still at the conceptual stage, the design needs more input to raise efficiency levels from a current 7% to more like the 20% plus level to be viable, but if these ideas can find needful government and corporate backing, this will result not only in greater and faster improvement of existing concepts, but a greater proliferation of innovative design solutions. 

Current trends in solar

Barak Obama talking up the solar power industry

Barak Obama talking up the solar power industry

i was reading an article recently called how solar power workswhich was quite informative, but it mentioned that some 41,000 homes in Australia had solar PVs on their rooves by the end of 2008, and this was expected to rise substantially by 2009. This sounded like a very small figure, and I wondered if there was more recent data. A quick search turned up a swag of articles charting the rise and rise of rooftop solar installations in recent years. The data in just about every article came from the Australian Clean Energy Regulator (ACER). Australia swept past 1 million domestic solar installations in March 2013 with solar advocates predicting a doubling, at minimum, within the following two years. That hasn’t happened, but still the take-up has been astonishing in the past six or seven years. This article from a month ago claims 1.3 million PVs, with another 170,000 systems going up annually, though it doesn’t quote sources. Others are saying that the industry is now ‘flagging’, due to the retreat of state-based subsidies, though the commercial sector is now getting in on the act, having recently tripled its share of the solar PV market to 15%. The current federal government seems unwilling to make any clear commitment to domestic solar, but the Clean Energy Finance Corp, which was established by the Gillard government, and which the Abbott government wants to axe, is now engaged in a deal with ET Solar, a Chinese company, to help finance the solarisation of shopping centres and other commercial energy users. Shopping centres, which operate all day virtually every day, would seem to be an ideal target for solar PV installation. Presumably these projects will go ahead as the Abbott government seems unable or unwilling to engage in Senate negotiations which will allow its policies, including those of axing the entities of previous governments, to progress.

There’s so much solar news around it’s hard to keep track of, but I’ll start locally, with South Australia. By the end of 2014 some 23% of SA homes had solar PV, a slight increase on the previous year. One effect has been to shift the peak power period from late afternoon to early evening (just after 7PM). South Australia leads the way with the highest proportion of panels, with Queensland close behind. Australia’s rapid adoption of rooftop solar is surpassed only by Japan. The Japanese are now voting decisively against nuclear energy with their panels.

SA-Bozing-day-solar

This graph  (from the Renew Economy website) shows that on Boxing Day last year (2014) rooftop solar in SA (the big yellow peak) reached one third of demand in the middle of the day, and averaged around 30% from 11.30am to 3.30pm. With our heavy reliance on wind power here, this means that these two renewable power sources accounted for some two thirds of demand during that period. Sadly, though, with the proposed reduction of the Renewable Energy Target, wind and solar (small and large scale) are being forced to compete with each other for more limited opportunities.

There are some short-term concerns. Clearly the federal government isn’t being particularly supportive of renewables, but it’s highly likely the conservatives will be out of office after the late 2016 election, after which there may be a little more investment certainty. There’s also clear evidence now that small-scale solar uptake is declining, though it’s still happening. Profit margins for solar companies are suffering in an increasingly competitive marketplace, so large-scale, more inherently profitable projects will likely be the way of the immediate future. Still, the greater affordability of solar PV over the last few years will ensure continued uptake, and a greater proportion of households taking advantage of the technology. According to a recent International Energy Association (IEA) publication:

The cost of PV modules has been divided by five in the last six years; the cost of full PV systems has been divided by almost three. The levelised cost of electricity of decentralised solar PV systems is approaching or falling below the variable portion of retail electricity prices that system owners pay in some markets, across residential and commercial segments.

The 2014 publication was a ‘technology roadmap’, updated from 2010. Based on the unexpectedly high recent uptake of solar PV, the IEA has revised upwards its share of global electricity production from 11% to 16% by 2050. But on the barriers to expansion, the IEA’s remarks in the foreword to this document read like a warning to the Australian government

Like most renewable energy sources and energy efficiency improvements, PV is very capital-intensive: almost all expenditures are made up-front. Keeping the cost of capital low is thus of primary importance for achieving this roadmap’s vision. But investment and finance are very responsive to the quality of policy making. Clear and credible signals from policy makers lower risks and inspire confidence. By contrast, where there is a record of policy incoherence, confusing signals or stop-and-go policy cycles, investors end up paying more for their finance, consumers pay more for their energy, and some projects that are needed simply will not go ahead. 

The four-year gap between each IEA roadmap may be too long, considering the substantial changes that can occur in the energy arena. There was greater growth in solar PV capacity in the 2010-2014 period than there was in the four previous decades. The possibilities of solar energy really began to catch on with the energy crisis of the seventies, and the technology has received a boost more recently due to climate change and the lack of effective leadership on the issue. The charge was led by European countries such as Germany and Italy, but since 2013 China has been leading the pack in solar PV adoption.

What, though, of the long-term future? That’s a subject best left for another post, but clearly solar is here to stay, and its energy share will continue to expand, a continued expansion that is causing problems for industries that have traditionally (though only over the past couple of centuries actually) profited from our expanding energy needs. Our future is bound up in how we can handle transitions that will be necessary if we are to maintain energy needs with a minimum of damage to our biosphere.

wind power in South Australia

Starfish Hill wind farm, near Cape Jervis, SA

Starfish Hill wind farm, near Cape Jervis, SA

I was unaware, until I recently listened to a forum panel on renewables broadcast by The Science Show, that wind power has really taken off in SA, where I live. Mea culpa. By August last year 27% of the state’s electricity production was from wind, and it’s now well over 30%, thanks to a new facility outside Snowtown, which came on stream in November. That’s half of Australia’s installed capacity, and it compares favourably with wind production in European countries such as Denmark (20%), Spain and Portugal (16%), Ireland (15%) and Germany (7%). It’s one of the great successes of the Mandatory Renewable Energy Target, introduced in a modest form by the conservative federal government in 2001 and expanded under the Labor government in 2009. The RET, like those in other countries, mandates that electricity retailers source a proportion of energy from renewables. South Australia’s renewable energy developers, under the longest-serving Labor government in the country, have been provided with tax incentives and a supportive regulatory framework to build wind farms throughout the state, to take advantage of the powerful Roaring Forties blowing in from the west.

The first wind turbine in SA was a small affair at Coober Pedy, but from 2004 onwards this form of energy generation has taken off here. The Snowtown wind farm mentioned above is the second in the region, and SA’s largest, with 90 turbines giving it an installed capacity of 270MW. We now have some 16 wind farms strategically located around the state, with an installed capacity of almost 1500MW. As far as I’m aware, we’re in fact the world leader in wind power – always remembering that, in population terms, we would be one of the smallest countries in the world, if we were a country.

The direct beneficiaries of these new farms are, of course, regional South Australians. An example is the 46 MW, 23-turbine Canunda wind farm near Millicent in the state’s south-east, which opened in 2005. The farm provides clean electricity generation to the region and has increased the viability of agricultural production. The facility has generated enough interest from the local community for tours to be undertaken.

Of course, one of the principle purposes of utilising renewable energy – apart from the obvious fact that it’s renewable – is the reduction of greenhouse gas emissions. And South Australia’s emissions have indeed declined in spite of increased electricity demand, due to the high penetration of wind power into the market.

This development has of course had its critics, and these are pretty well summed up on Wikipedia – linked to above:

There has been some controversy with respect to the impact of the rising share of wind power and other renewables such as solar on retail electricity prices in South Australia. A 2012 report by The Energy Users Association of Australia claimed that retail electricity prices in South Australia were then the third highest in the developed world behind Germany and Denmark, with prices likely to rise to become the most expensive in the near future.[24] The then South Australian Opposition Leader, Isobel Redmond, linked the state’s high retail prices for electricity to the Government’s policy of promoting development of renewable energy, noting that Germany and Denmark had followed similar policies. On the other hand, it has been noted that the impact of wind power on the merit order effect, where relatively low cost wind power is purchased by retailers before higher cost sources of power, has been credited for a decline in the wholesale electricity price in South Australia. Data compiled by the Australian Energy Market Operator (AEMO) shows South Australian wholesale electricity prices are the 3rd-highest out of Australia’s five mainland states, with the 2013 South Australian Electricity Report noting that increases in prices were “largely driven by transmission and distribution network price increases”.

The issue of cost to the consumer (of energy in general) is without doubt extremely important (and complex), and I’ll try to wade into it, I hope, in another post, but for now I want to look just at the costs for wind, and whether there are any further developments in the offing.

According to this site, which is informative but perhaps not as regularly updated as it could be in such a changing energy environment, SA’s Premier last year renewed his government’s pledge to have 50% of the state’s annual power supplied by renewable energy by 2025, a very realistic target considering that, according to the same site, wind and solar were already at 38% of annual supply, as of December 2013. However he pointed out that this would be difficult if the federal government reduced its RET target, then at 41TWh by 2020. In October federal industry minister Ian Macfarlane and environment minister Greg Hunt proposed a reduction of the RET to 27TWh.

A more recent article on the Renew Economy website argues that, though the government appears to have upped the proposed figure to around 31 or 32TWh, it may be targeting large-scale wind power projects by trying to incorporate rooftop solar, which has been taken up rapidly in recent years, into the large-scale target. The initial target was 45TWh overall, with a projected rooftop solar take-up of 4TWh, leaving 41TWh for large-scale renewable energy projects. We’re currently at 7TWh for rooftop solar, and the Warburton Review expects this to double by 2020. Hints by the government ministers that the take-up of rooftop solar should be reflected in the renewed target are adding to uncertainty in the industry, which is said to be in limbo at present. It may take a change of government to resolve the situation. Meanwhile however, South Australia leads the way with wind, and if the graph on the Renew Economy website is to be believed, we’ve already passed our 50% target for renewables (though the graph appears to fluctuate from moment to moment). The graph shows that we’re currently generating 710MW from wind, 527MW from natural gas and 179MW from brown coal. That makes just on 50% from wind alone. Compare this with Victoria, a much more populous state, which generates almost as much from wind – 592MW. However, that’s only about a tenth of what it currently generates from brown coal, its principle energy source (5670MW).

A new wind farm has been approved for Stony Gap, near Burra, but there may be delays in the project due to industry uncertainty about the RET and the federal government’s plans. Energy Australia, the project’s developers say ominously: We are now re-assessing the project based on current market conditions as well as government policy and legislation.  

And the cost? This is hard to gauge. As with solar, the cost of wind power has come down markedly in recent times. Basically the cost is for initial capital rather than running costs, but some argue that, because wind farms require back-up, presumably from fossil fuels, for those windless days, this should be incorporated into the cost.