Tag Archives: Tesla

the battery, Snowy Hydro and other stuff

Let’s get back to batteries, clean energy and Australia. Here’s a bit of interesting news to smack our clean-energy-fearing Feds with – you know, Freudenberg, Morrison and co. The Tesla Big Battery successfully installed at the beginning of summer, and lampooned by the Feds, turns out to be doing a far better job than expected, and not just here in South Australia. Giles Parkinson reported on it in Renew Economy on December 19:

The Tesla big battery is having a big impact on Australia’s electricity market, far beyond the South Australia grid where it was expected to time shift a small amount of wind energy and provide network services and emergency back-up in case of a major problem.

Last Thursday, one of the biggest coal units in Australia, Loy Yang A 3, tripped without warning at 1.59am, with the sudden loss of 560MW and causing a slump in frequency on the network.

What happened next has stunned electricity industry insiders and given food for thought over the near to medium term future of the grid, such was the rapid response of the Tesla big battery to an event that happened nearly 1,000km away.

The Loy Yang brown coal fired power station is in south eastern Victoria, so why did South Australia’s pride and joy respond to a problem in our dirty-coal neighbouring state? It surely wouldn’t have been contracted to, or would it? Parkinson also speculates about this. Apparently, when a power station trips, there’s always another unit contracted to provide back-up, officially called FCAS (frequency control and ancillary services). In Loy Yang’s case it’s a coal generator in Gladstone, Queensland. This generator did respond to the problem, within seconds, but the Tesla BB beat it to the punch, responding within milliseconds. That’s an important point; the Tesla BB didn’t avert a blackout, it simply proved its worth, without being asked. And it has been doing so regularly since early December. It seems the Tesla BB has cornered the market for fast frequency control. Don’t hold your breath for the Feds to acknowledge this, but they will have taken note, unless they’re completely stupid. They’ll be finding some way to play it (or downplay it) politically.

As Parkinson notes in another article, the energy industry has been slow to respond, in terms of regulation and accommodation, to the deployment of battery systems and their rapid charge-discharge features. Currently, providing FCAS is financially rewarded, which may have to do with costs involved but the cost/reward relationship appears to be out of kilter. In any case, battery response is much more cost-effective and threatens the antiquated reward system. The AEMC is planning to review frequency control frameworks, but it’ll no doubt be a slow process.

This is an incredibly complex area, combining new, barely-understood (by me) technologies of generation and storage, and the transformation of long-standing energy economies, with a host of vested interests, subsidies and forward plans, but I intend to struggle towards enlightenment, as far as I can.

Neoen’s Hornsdale Wind Farm

Regardless of regulation and grid problems, renewable energy projects keep on popping up, or at least popping into my consciousness through my desultory reading (NY resolution: inform myself much more on what’s going on, here and elsewhere, in clean energy). For example, the Murra Warra wind farm’s first stage will have an output of 226MW,  which has already been sold to a consortium of Australian corporations including Telstra and ANZ. The farm is near Horsham in western Victoria, and will finally have a capacity of up to 429MW, making it one of the biggest in the Southern Hemisphere. And of course there are many other projects underway. Back in August, the Renewable Energy Index, a monthly account of the renewable energy sector, was launched. Its first publication, by Green Energy Markets, was a benchmark report for 2016-7, all very glossy and positive. The latest publication, the November index, shows that rooftop solar installations for that month broke the monthly record set in June 2012 when subsidies were twice to three times what they are today. The publication’s headline is that the 2020 RET will be exceeded and that there are ‘enough renewable energy projects now under development to deliver half of Australia’s electricity by 2030’. The Clean Energy Council, the peak body for Australian dean energy businesses, also produces an annual report, so it will be interesting to compare its 2017 version with the Renewable Energy Index.

Hydro is in fact the biggest clean energy provider, with 42.3% of the nation’s renewable energy according to the 2016 Clean Energy Australia Report. Wind, however, is the fastest growing provider. This brings me to a topic I’ve so far avoided: The $4 billion Snowy Hydro 2 scheme.

Here’s what I’m garnering from various experts. It’s a storage scheme and that’s all to the good. As a major project it will have a long lead time, and that’s not so good, especially considering the fast growing and relatively unpredictable future for energy storage. As a storage system it will be a peak load provider, so can’t be compared to the Hazelwood dirty coal station, which is a 24/7 base load supplier. There’s a lot of misinformation from the Feds about the benefits, eg to South Australia, which won’t benefit and doesn’t need it, it’s sorting its own problems very nicely thanks. There’s a question about using water as an electricity supplier, due to water shortages, climate change and the real possibility of more droughts in the future. There are also environmental considerations – the development is located in Kosciuszko National Park. There’s some doubt too about the 2000MW figure being touted by the Feds, an increase of 50% to the existing scheme. However, many of these experts, mostly academics, favour the scheme as a boost to renewable energy investment which should be applied along with the other renewables to transform the market. In saying this, most experts agree that there’s been a singular lack of leadership and common-sense consensus on dealing with this process of transformation. It has been left mostly to the states and private enterprise to provide the initiative.

 

Advertisements

electric vehicles in Australia, a sad indictment

(this is reblogged from the new ussr illustrated, first published August 15 2017)

Toyota Prius

I must say, as a lay person with very little previous understanding of how batteries, photovoltaics or even electricity works, I’m finding the ‘Fully Charged’ and other online videos quite addictive, if incomprehensible in parts, though one thing that’s easy enough to comprehend is that transitional, disruptive technologies that dispense with fossil fuels are being taken up worldwide at an accelerating rate, and that Australia is falling way behind in this, especially at a governmental level, with South Australia being something of an exception. Of course the variation everywhere is enormous – for example, currently, 42% of all new cars sold today in Norway are fully electric – not just hybrids. This compares to about 2% in Britain, according to Fully Charged, and I’d suspect that the percentage is even lower in Oz.

There’s so much to find out about and write about in this field it’s hard to know where to start, so I’m going to limit myself in this post to electric cars and the situation in Australia.

First, as very much a lower middle class individual I want to know about cost, both upfront and ongoing. Now as you may be aware, Australia has basically given up on making its own cars, but we do have some imports worth considering, though we don’t get subsidies for buying them as they do in many other countries, nor do we have that much in the way of supportive infrastructure. Cars range in price from the Tesla Model X SUV, starting from $165,000 (forget it, I hate SUVs anyway), down to the Toyota Prius C and the Honda Jazz, both hybrids, starting at around $23,000. There’s also a ludicrously expensive BMW plug-in hybrid available, as well as the Nissan Leaf, the biggest selling electric car worldwide by a massive margin according to Fully Charged, but probably permanently outside of my price range at $51,000 or so.

I could only afford a bottom of the range hybrid vehicle, so how do hybrids work, and can you run your hybrid mostly on electricity? It seems that for this I would want a (more expensive) plug-in hybrid, as this passage from the Union of Concerned Scientists (USA) points out:

The most advanced hybrids have larger batteries and can recharge their batteries from an outlet, allowing them to drive extended distances on electricity before switching to [petrol] or diesel. Known as “plug-in hybrids,” these cars can offer much-improved environmental performance and increased fuel savings by substituting grid electricity for [petrol].

I could go on about the plug-ins but there’s not much point because there aren’t any available here within my price range. Really, only the Prius, the Honda Jazz and a Toyota Camry Hybrid (just discovered) are possibilities for me. Looking at reviews of the Prius, I find a number of people think it’s ugly but I don’t see it, and I’ve always considered myself a person of taste and discernment, like everyone else. They do tend to agree that it’s very fuel efficient, though lacking in oomph. Fuck oomph, I say. I’m the sort who drives cars reluctantly, and prefers a nice gentle cycle around the suburbs. Extremely fuel efficient, breezy and cheap. I’m indifferent to racing cars and all that shite.

Nissan Leaf

I note that the Prius  has regenerative braking – what the Fully Charged folks call ‘regen’. In fact this is a feature of all EVs and hybrids. I have no idea wtf it is, so I’ll explore it here. The Union of Concerned Scientists again:

Regenerative braking converts some of the energy lost during braking into usable electricity, stored in the batteries.

Regenerative braking” is another fuel-saving feature. Conventional cars rely entirely on friction brakes to slow down, dissipating the vehicle’s kinetic energy as heat. Regenerative braking allows some of that energy to be captured, turned into electricity, and stored in the batteries. This stored electricity can later be used to run the motor and accelerate the vehicle.

Of course, this doesn’t tell us how the energy is captured and stored, but more of that later. Regenerative braking doesn’t bring the car to a stop by itself, or lock the wheels, so it must be used in conjunction with frictional braking.  This requires drivers to be aware of both braking systems and how they’re combined – sometimes problematic in certain scenarios.

The V useful site How Stuff Works has a full-on post on regen, which I’ll inadequately summarise here. Regen (in cars) is actually celebrating its fiftieth birthday this year, having been first introduced in the Amitron, a car produced by American Motors in 1967. It never went into full-scale production. In conventional braking, the brake pads apply pressure to the brake rotors to the slow the vehicle down. That expends a lot of energy (imagine a large vehicle moving at high speed), not only between the pads and the rotor, but between the wheels and the road. However, regen is a different system altogether. When you hit the brake pedal of an EV (with hand or foot), this system puts the electric motor into reverse, slowing the wheels. By running backwards the motor acts somehow as a generator of electricity, which is then fed into the EV batteries. Here’s how HSW puts it:

One of the more interesting properties of an electric motor is that, when it’s run in one direction, it converts electrical energy into mechanical energy that can be used to perform work (such as turning the wheels of a car), but when the motor is run in the opposite direction, a properly designed motor becomes an electric generator, converting mechanical energy into electrical energy.

I still don’t get it. Anyway, apparently this type of braking system works best in city conditions where you’re stopping and going all the time. The whole system requires complex electronic circuitry which decides when to switch to reverse, and which of the two braking systems to use at any particular time. The best system does this automatically. In a review of a Smart Electric Drive car (I don’t know what that means – is ‘Smart’ a brand name? – is an electric drive different from an electric car??) on Fully Charged, the test driver described its radar-based regen, which connects with the GPS to anticipate, say, a long downhill part of the journey, and in consequence to adjust the regen for maximum efficiency. Ultimately, all this will be handled effectively in fully autonomous vehicles. Can’t wait to borrow one!

Smart Electric Drive, a cute two-seater

I’m still learning all this geeky stuff – never thought I’d be spending an arvo watching cars being test driven and  reviewed.  But these are EVs – don’t I sound the expert – and so the new technologies and their implications for the environment and our future make them much more interesting than the noise and gas-guzzling stink and the macho idiocy I’ve always associated with the infernal combustion engine.

What I have learned, apart from the importance of battery size (in kwh), people’s obsession with range and charge speed, and a little about charging devices, is that there’s real movement in Europe and Britain towards EVs, not to mention storage technology and microgrids and other clean energy developments, which makes me all the more frustrated to live in a country, so naturally endowed to take advantage of clean energy, whose federal government is asleep at the wheel on these matters, when it’s not being defensively scornful about all things renewable. Hopefully I’ll be able to report on positive local initiatives in this area in future, in spite of government inertia.