Tag Archives: economics

universal basic income 2: how to finance it





Imagine this highly unlikely scenario. The current conservative Australian government loses the 2022 federal election in a landslide, due to widespread financial corruption, inaction on addressing global warming – brought into relief by another devastating summer in 2020-21- and the rise of a young, charismatic leader of the leftist Labor opposition, who has managed to sell voters on an Aussie version of the Green New Deal, as well an ambitious Basic Income policy.

It’s okay to dream, but we have to get real. How do we make such a policy work?

I will rely on the ideas and calculations of finance journalist and author of A basic income for Australia, Brian Donaghy, for the following. First, based on the Australian Council of Social Services (ACOSS) campaign of March 2020 which advocated a rise in what’s now called Jobseeker to $755.70 per fortnight (of course, the Covid19 pandemic has caused the current government to raise the previous payment, with obvious reluctance, to a figure which is still well below the ACOSS recommendation), together with an increased rent assistance payment of $158 per fortnight, the Basic Income payment should be set at $913.70 per fortnight, for every adult. Children would be given a percentage, depending on age. The total cost of such a package would be about $526 billion per annum. Alternatively, the payment could be set at the aged pension rate, plus supplements – $944 fortnightly – totalling about $544 billion per annum. The OECD takes the poverty line to be about $1000 per fortnight, and Australia’s minimum wage for the 2019-20 year was around $1481 per fortnight.

So, how do we find, let’s say, $544 billion dollars a year to finance this scheme? According to Donaghy’s costings, savings on welfare payments and administration would bring the figure down to about $415 billion. Next, Donaghy looks at ‘individual tax offsets and deductions’, which he claims the government should scrap. I can’t pretend to understand this, but scrapping these perks would, he claims, bring the basic income cost down to $377 billion.

All of this should simplify the tax system, making tax evasion and avoidance more difficult, and increasing revenue to the ATO, though putting a dollar amount on this might be difficult. However, tax avoidance task-forces have been in operation for some years and have collected billions of dollars. Their job would be made easier by a a more simplified system.

Another factor which would increase tax revenue by a hard-to-calculate amount would be the increased spending power created by the basic income. Remember, its universality would provide lower and middle income earners with the opportunity to spend more on dining out, home improvements, internal tourism and the like. Australia’s corporate profits would increase, according to economic modelling, enough to bring the cost of the UBI down to about $282 billion, though Donaghy has chosen to be more conservative, lowering the cost to around $320 billion.

The UBI goes to everyone, so that for many taxpayers it would be additional income at the top marginal rate. Without going into detail, this would bring in further tax revenue, totalling almost $81.7 billion, and bringing the cost of the UBI down to somewhere around $240 billion – with nobody suffering since that extra tax would only be a percentage of the extra income provided to the wealthy.

One could go on tweaking the system and working out theoretical savings, such as a restructuring of the government subsidies paid to particular industries, often described as business or corporate welfare. Australia’s Productivity Commission estimated that government ‘budgetary assistance’ to corporations totalled approximately $12 billion in 2018-19. Arguments as to whether such assistance constitutes sound government investment will run the gamut, and will of course depend on how much potential each corporation has – prediction about the future being particularly tricky. However, as Donaghy points out, modern companies have become increasingly technocratic and international, tending to shed rather than increase workers, and if they need hands-on work, may be able to source it from developing countries with cheap labour rates. Government handouts end up mostly if not entirely at the top end of town. Our federal government apparently subsidises the fossil fuel industry to to the tune of $12 billion annually, always using the ‘jobs jobs jobs’ mantra, but these industries are shedding jobs and are not major employers.

Other ways of tweaking the system include taxing multinational tech companies such as Google, Apple and Facebook – always risky, as they tend to respond with ‘big money muscle’, threatening to limit services. the Goods and Services Tax can also be looked at. Many European nations impose a higher GST on luxury items. Even raising the basic rate by one percent will bring in an extra $7 billion. Since the UBI would lead to greater spending, much of the money raised would be recirculated through the system.

Again I should emphasise that this is a very rough guide, largely based on Brian Donaghy’s rough guide to funding a UBI. However, I’m not optimistic enough to believe that anything like a UBI will operate in Australia in the near future. Meanwhile, with the current jobs crisis and shutdowns caused by the pandemic, the Australian government is operating with an online compliance system for jobseekers which is near-criminal in its stress-inducing incomprehensibility, and touting an increase in jobseeker payments, which, as mentioned, will keep these payments far below any reasonably projected UBI. The current government’s support of those most damaged by the pandemic – for example, those, like myself, who work in the international student sector – has been as minimal as it feels it can get away with. Of course the current government has essentially prided itself on its ‘if it isn’t broken, don’t fix it’ lack of innovation, so we clearly need to look elsewhere. The 2022 election is one source of hope, but there are other options besides a UBI (and of course there also many options within UBI). In her recent (2020) book, Glimpses of Utopia , Jess Scully, arts entrepreneur, curator and Deputy Lord Mayor of Sydney, has promoted the idea of Universal Basic Services as a less ‘libertarian’ and more community-oriented approach to reducing disadvantage and improving inclusivity. I’ll explore this concept further next time.

References

Brian Donaghy, A basic income for Australia, 2020

Jess Scully, Glimpses of utopia, 2020

Advertisement

the tides – a massive potential resource?

A floating tidal turbine, Orkney islands, as seen on Fully Charged

A recent episode of Fully Charged, the Brit video series on the sources and harnessing of clean energy, took us again to the very windy Orkney Isles at the top of Scotland to have a look at some experimental work being done on generating energy from tidal forces. When you think of it, it seems a no-brainer to harness the energy of the tides. They’re regular, predictable, unceasing, and in some places surely very powerful. Yet I’ve never heard of them being used on an industrial scale.

Of course, I’m still new to this business, so the learning curve continues steep. Tide mills have been used historically here and there, possibly even since Roman times, and tidal barrages have been operating since the sixties, the first and for a long time the largest being the La Rance plant, off the coast of Brittany, generating 240 MW. A slightly bigger one has recently been built in Korea (254 MW).

But tidal barrages – not what they’re testing in the Orkneys – come with serious environmental impact issues. They’re about building a barrage across a bay or estuary with a decent tidal flow. The barrage acts as a kind of adjustable dam, with sluice gates that open and close, and additional pumping when necessary. Turbines generate energy from pressure and height differentials, as in a hydro-electric dam. Research on the environmental impact of these constructions, which can often be major civil engineering projects, has revealed mixed results. Short-term impacts are often devastating, but over time one type of diversity has been replaced by another.

Anyway, what’s happening in the Orkneys is something entirely different. The islanders, the Scottish government and the EU are collaborating through an organisation called EMEC, the European Marine Energy Centre, to test tidal power in the region. They appear to be inviting innovators and technicians to test their projects there. A company called ScotRenewables, for example, has developed low-maintenance floating tidal turbines with retractable legs, one of which is currently being tested in the offshore waters. They’re designed to turn with the ebb and flood tides to maximise their power generation. It’s a 2 MW system, which of course could be duplicated many times over in the fashion of wind turbines, to generate hundreds if not thousands of megawatts. The beauty of the system is its reliability – as the tidal flow can be reliably predicted at least eighteen years into the future, according to the ScotRenewables CEO. This should provide a sense of stability and confidence to downstream suppliers. Also, floating turbines could easily be removed if they’re causing damage, or if they require maintenance. Clearly, the effect on the tidal system would be minimal compared to an estuarine barrage, though there are obvious dangers to marine life getting too close to turbines. The testing of these turbines is coming to an end and they’ve been highly successful so far, though they already have an improved turbine design in the wings, which can be maintained either in situ or in dock. The design can also be scaled down, or up, to suit various sites and conditions.

rotors are on retractable legs, to protect from storms, etc

Other quite different turbine types are being tested in the region, with a lot of government and public support, but I got the slight impression that commercial support for this kind of technology is somewhat lacking. In the Fully Charged video on this subject (to which I owe most of this info), Robert Llewelyn asked the EMEC marketing manager whether she thought tidal or wave energy had the greatest future potential (she opted for wave). My ears pricked up, as wave energy is another newie for me. Duh. Another post, I suppose.

As mentioned though in this video, a lot of the developments in this tidal technology have come from shipbuilding technology, from offshore oil and gas technology, and from maritime technology more generally, as well as modern wind turbine technology, further impressing on me that skills are transferable and that the cheap clean energy revolution won’t be the economic/employment disaster that the fossil fuel dinosaurs predict. It’s a great time for innovation, insight and foresight, and I can only hope that more government and business people in Australia, where I seem to be stuck, can get on board.

fixed underwater tidal turbine being tested off the Orkney Islands

on the explosion of battery research – part two, a bitsy presentation

(this is reblogged from the new ussr illustrated, first published August 1 2017)

This EV battery managed to run for 1200 kilometres on a single charge at an average of around 51 mph

Ok, in order to make myself fractionally knowledgable about this sort of stuff I find myself watching videos made by motor-mouthed super-geeks who regularly do blokes-and-sheds experiments with wires and circuits and volt-makers and resistors and things that go spark in the night, and I feel I’m taking a peek at an alternative universe that I’m not sure whether to wish I was born into, but I’ll try anyway to report on it all without sounding too swamped or stupefied by the detail.

However, before I go on, I must say that, since my interest in this stuff stems ultimately from my interest in developing cleaner as well as more efficient energy, and replacing fossil fuel as a principal energy source, I want to voice my suspicions about the Australian federal government’s attitude towards clean and renewable energy. This morning I heard Scott Morrison, our nation’s Treasurer, repeating the same deliberately misleading comments made recently by Josh Frydenberg (the nation’s energy minister, for Christ’s sake) about the Tesla battery, which is designed to provide back-up power as part of a six-point SA government plan which the feds are well aware of but are unwilling to say anything positive about – or anything at all. Morrison, Frydenberg and that other trail-blazing intellectual, Barnaby Joyce, our Deputy Prime Minister, have all been totally derisory of the planned battery, and their pointlessly negative comments have thrown the spotlight on something I’ve not sufficiently noticed before. This government, since the election of just over a year ago, has not had anything positive to say about clean energy. In fact it has never said anything at all on the subject, by deliberate policy I suspect. We know that our PM isn’t as stupid on clean energy as his ministers, but he’s obviously constrained by his conservative colleagues. It’s as if, like those mythical ostriches, they’re hoping the whole world of renewables will go away if they pay no attention to it.

Anyway, rather than be demoralised by these unfortunates, let’s explore the world of solutions.

As a tribute to those can-do, DIY geeky types I need to share a great video which proves you can run an electric vehicle on a single charge for well over 1000ks – theirs made it to 1200ks – 748 miles in that dear old US currency – averaging around 51 mph. It’s well worth a watch, though with all the interest there are no doubt other claimants to the record distance for a single charge. Anyway, you can’t help but admire these guys. Tesla, as the video shows, are still trying to make it to 1000ks, but that’s on a regular, commercial basis of course.

In this video, basically an interview with battery researcher and materials scientist Professor Peter Bruce at Oxford University, the subject was batteries as storage systems. These are the batteries you find in your smart phones and other devices, and in electric vehicles (EVs). They’ll also be important in the renewable energy future, for grid storage. You can pump electricity into these batteries and, through a chemical process that I’m still trying to get my head around, you can store it for later use. As Prof Bruce points out, the lithium-ion battery revolutionised the field by more or less doubling the energy density of batteries and making much recent portable electronics technology possible. This energy density feature is key – the Li-ion batteries can store more energy per unit mass and volume. Of course energy density isn’t the only variable they’re working on. Speed of charge, length of time (and/or amount of activity) between charging, number of discharge-recharge cycles per battery, safety and cost are all vitally important, but when we look at EVs and grid storage you’re looking at much larger scale batteries that can’t be simply upgraded or replaced every few months. So Bruce sees this as an advantage, in that recycling and re-using will be more of a feature of the new electrified age. Also, as very much a  scientist, Bruce is interested in how the rather sudden focus on battery storage reveals gaps in our knowledge which we didn’t really know we had – and this is how knowledge often progresses, when we find we have an urgent problem to solve and we need to look at the basics, the underlying mechanisms. For example, the key to Li-ion batteries is the lithium compound used, and whether you can get more lithium ions out of particular compounds, and/or get them to move more quickly between the electrodes to discharge and recharge the battery. This requires analysis and understanding at the fundamental, atomistic level. Also, current Li-ion batteries for portable devices generally use cobalt in the compound, which is too expensive for large-scale batteries. Iron, manganese and silicates are being looked at as cheaper alternatives. This is all new research – and he makes no mention of the work done by Goodenough, Braga et al.

In any case it’s fascinating how new problems lead to new solutions. The two most touted and developed forms of renewable energy – solar and wind – both have this major problem of intermittence. In the meantime, battery storage, for portable devices and EVs, has become a big thing, and now new developments are heating up the materials science field in an electrifying way, which will in turn hot up the EV and clean energy markets.

The video ended by neatly connecting with the geeky DIY video in showing how dumped, abandoned laptop batteries and other batteries had plenty of capacity left in them – more than 60% in many cases, which is more than useful for energy storage, so they were being harvested by PhD students for use in small-scale energy storage systems for developing countries. Great for LED lighting, which requires little power. The students were using an algorithm to get each battery in the system to discharge at different rates (since they all had different capacities or charge left in them) so they could get maximum capacity out of the system as a whole. I think I actually understood that!

Okay – something very exciting! The video mentioned above is the first I’ve seen of a British series called ‘Fully Charged’, all about batteries, EVs and renewable energy. I plan to watch the series for my education and for the thrill of it all. But imagine my surprise when I started watching this one, still part of the series, made here in Adelaide! I won’t go into the content of that video, which was about flow batteries which can store solar energy rather than transferring it to the grid. I need to bone up more on that technology before commenting, and it’s probably a bit pricey for the likes of me anyway. What was immediately interesting to me was how quickly he (Robert Llewellyn, the narrator/interviewer) cottoned on to our federal government’s extreme negativity regarding renewables. Glad to have that back-up! I note too, by the way, that Australia has no direct incentives to buy EVs, of which there are few in the country – again all due to our troglodyte government. It’s frankly embarrassing.

So, there’s so much happening with battery technology and its applications that I might need to take some time off to absorb all the videos and docos and blogs and podcasts and development plans and government directives and projects and whatnot that are coming out all the time from the usual and some quite unusual places, not to mention our own local South Australian activities and the naysayers buzzing around them. Then again I may be moved to charge forward and report on some half-digested new development or announcement tomorrow, who knows….

References

They’re all in the links above, and I highly recommend the British ‘Fully Charged’ videos produced by Robert Llewellyn and Johnny Smith, and the USA ‘jehugarcia’ videos, which, like the Brit ones but in a different way, are a lot of fun as well as educational.

 

How will the super-duper Tesla battery work? And more on the price of electricity

(this is reblogged from the new ussr illustrated, first published July 19 2017)

Image: Thermo Fisher Scientific Inc.

I received an email the other day from the Australia Insitute. I don’t know how that happened, I’ve never heard of the organisation. Apparently it’s Australia’s most influential progressive think-tank (self-described) and apparently I subscribed to it recently while in a barely conscious state. All good.

Anyway the topic was timely: ‘Rising Energy Bills: Blame Gas’.

In a very recent post I quoted from a few apparently reliable sources on the reason for South Australia’s very high electricity prices. Unfortunately there wasn’t too much agreement among them, though at least none of them blamed renewable energy. But neither did any of them blame gas, though one did point a finger at wholesale pricing. The Australia Institute’s email put it thus:

Yesterday, we released the latest Electricity Update of the National Energy Emissions Audit for July 2017. The report revealed a stunning correlation between domestic electricity prices and gas prices — particularly in South Australia — despite gas making up only 10 percent of electricity generation.

So this is a subject I need to return to – in my next post. This post will focus on batteries and storage.

Neoen, a French renewable energy company, is building a 315MW, 99 turbine wind farm near Jamestown in South Australia. Connected to this project will be an array of Tesla’s lithium ion Powerpack batteries. According to this ABC News article:

The array will be capable of an output of 100 megawatts (MW) of power at a time and the huge battery will be able to store 129 megawatt hours (MWh) of energy so, if used at full capacity, it would be able to provide its maximum output for more than an hour.

It will be a modular network, with each Powerpack about the size of a large fridge at 2.1 metres tall, 1.3m long and 0.8m wide. They weigh in at 1,200 kilograms each.

It will have just slightly more storage than the next biggest lithium battery, built by AES this year in southern California.

But Tesla’s 100 MW output would be more than three times larger than the AES battery and five times larger than anything Tesla has built previously.

I’m no electrochemist, but a nice scrutiny of these sentences identifies a clear distinction between output and storage. And the output of this planned battery is the pioneering aspect.

So here’s a very basic summary of how a rechargeable lithium ion battery works. Each battery (and they vary hugely in size) is made up of a number of cells, each a battery in itself. On opposite sides of the cell are conductive surfaces, aka current collectors, one of aluminium and the other of copper. Inside and joined to these surfaces are electrodes, the positive cathode and the negative anode. The cathode is made from a lithium metal oxide such as lithium cobalt oxide or lithium iron phosphate, which needs to have the purest, most uniform composition for maximum performance and longevity. The negative anode is made from graphite, a layered form of carbon. The layered structure allows the lithium ions (Li+) created by the current to be easily stored at and removed from the carbon surface. Between these electrodes, filling the cell, is an electrolyte fluid through which lithium ions flow from one electrode to the other, which charges and discharges the cell. Again the purity of this fluid is a vital factor (research is being done to come up with a form of solid electrolyte). Between the two electrodes is an insulating plastic separator, essential to keep the electrodes separate and prevent short-circuiting. This plastic membrane allows the lithium ions to pass through it. The battery is charged when the lithium ions have passed through the separator and become attached to and stored in the layered graphite of the anode. The battery is discharged by reversing the flow.

Lithium ion batteries are found not only in Tesla Powerpacks but generally in electric car batteries and many other devices such as my own iPhone and iPad. They’re lighter and have much less energy density than lead-acid batteries. The technology of lithium ion batteries is described in a number of useful online videos, of which the most comprehensive, I think, is a webinar from the American Chemistry Society (ACS), essentially an interview with Dee Strand, a lithium ion battery specialist and expert. Her talk also provides interesting ideas on how these types of batteries can be improved.

So a fully-charged cell has stored energy, and a discharging cell is producing output. There are variations in lithium ion battery technology, for example variations in the electrode materials, the electrolyte composition and the like, so we don’t know precisely what Tesla will be using for the South Australian battery system, but we have a fair idea.

In any case, there seems no obvious reason why this proven technology can’t be scaled up to meet the sort of need that was identified after last September’s state blackout. Now we just have to wait and see whether Musk will lose his bet regarding completion time come December.

Refs and info

http://www.tai.org.au/

http://www.abc.net.au/news/2017-07-07/what-is-tesla-big-sa-battery-and-how-will-it-work/8688992

https://www.thermofisher.com/content/dam/tfs/ATG/CMD/cmd-documents/sci-res/pub/comm/env/AR-Lithium-Ion-Battery-Degradation-RandD-Mag-042214.pdf

http://www.abc.net.au/news/2017-07-07/sa-to-get-worlds-biggest-lithium-ion-battery/8687268

Just type in ‘lithium ion battery’ in youtube

the SA government’s six-point plan for energy security, in the face of a carping Federal government

(this is reblogged from the new ussr illustrated, first published July 16 2017)

South Australian Premier Jay Weatherill, right, with SA Energy Minister Tom Koutsantonis

The South Australian government has a plan for energy, which you can take a look at here. And if you’re too lazy to click through, I’ll summarise:

  1. Battery storage and renewable technology fund: Now touted as the world’s largest battery, this will be a storage facility for wind and solar energy, and if it works, it will surely be a major breakthrough, global in its implications. The financing of the battery (if we have to pay for it!) will come from a new renewable energy fund.
  2. New state-owned gas power plant: This will be a 250 MW capacity gas powered facility designed initially for emergency use, and treated as a future strategic asset when (and if) greater energy stability is achieved at the national level. In the interim the state government will (try to?) work with transmission and distribution companies to provide 200 MW of extra generation in times of peak demand.
  3. Local powers over the national market: The government will legislate for strong new state powers for its Energy Minister as a last-resort measure to enable action in South Australia’s best interests when in conflict with the national market. In addition, all new electricity-generation projects above 5 MW will be assessed as to their input into the state electricity system and its security.
  4. New generation for more competition: The SA Government will use its own electricity contract (for powering schools, hospitals and government services) to tender for more new power generators, increasing competition in the market and putting downward pressure on prices.
  5. South Australian gas incentives: Government incentives will be given for locally-sourced gas development (we have vast untapped resources in the Cooper Basin apparently) so that we can replace all that dirty brown coal from Victoria.
  6. Energy Security Target: This new target, modelled by Frontier Economics, will be designed to encourage new investments in cleaner energy, to increase competition and put downward pressure on prices. The SA government will continue to advocate for an Emissions Intensity Scheme (EIS), contra the Federal government. It’s expected that the Energy Security Target will morph into an EIS over time – depending largely on supportive national policy. Such a scheme is widely supported by industry and climate science.

It’s an ambitious plan perhaps but it’s definitely a plan, and definitely actionable. The battery storage part is of course generating a lot of energy already, both positive and negative, as pioneering projects tend to do. I’m very much looking forward to December’s unveiling. Interestingly, in this article from April this year, SA Premier Jay Weatherill claimed 90 expressions of interest had been received for building the battery. Looks like they never stood a chance against the mighty Musk. In the same article, Weatherill announced that the expression of interest process had closed for the building of SA’s gas power plant, point two of the six-point plan. Thirty-one companies from around the world have vied for the project, apparently. And as to point three, the new powers legislation was expected to pass through parliament on April 26. Weatherill issued a press release on the legislation in late March. Thanks to parliamentary tracking, I’ve found that the bill – called the Bill to Amend the Emergency Management (Electricity Supply Emergencies) Act – was passed into law by the SA Governor on May 9.

Meanwhile, two regional projects, one in the Riverland and another in the north of SA, are well underway. A private company called Lyon Group is building a $1 billion battery and solar farm at Morgan, and another smaller facility, named Kingfisher, in the north. In this March 30 article by Chris Harmsen, a spokesperson for Lyon Group said the Riverland project, Australia’s largest solar farm, was 100% equity financed (I don’t know what that means – I’ll read this later) and would be under construction within months. It will provide 300MW of storage capacity. The 120 MW Kingfisher project will begin construction in September next year. Then there’s AGL’s 210MW gas-fired power station on Torrens Island, mentioned previously. It’s worth noting that AGL’s Managing Director Andy Vesey spoke of the positive investment climate created by the SA government’s energy plans.

So I think it’s fair to say that in SA we’re putting a lot of energy into energy. Meanwhile, the Federal Energy minister, Josh Frydenberg, never speaks positively about SA’s plans. Presumably this is because SA’s government is on the other side of the political divide. You can’t say anything positive about your political enemies because they might stop being your enemies, and then what would you do? The identity crisis would be intolerable.

I’ve written about macho adversarial systems in politics, law and industrial relations before. Frydenberg, as the Federal Minister, must be well aware of SA’s six-point plan (found with a couple of mouse-clicks), and of the plans and schemes of all the other state governments, otherwise he’d be massively derelict in his duty. Yet he’s pretty well entirely dismissive of the Tesla-Neoen deal, and describes the other SA initiatives, pathetically, as ‘an admission of failure’. It seems almost a rule with the current Feds that you don’t mention renewable, clean energy positively and you don’t mention the SA government’s initiatives in the energy field except negatively. Take for example Frydenberg’s reaction to recent news that the Feds are consulting with the car industry on reducing fuel emissions. He brought up the ‘carbon tax’ debacle (a reference to the former Gillard government’s 2012 carbon pricing scheme, repealed by the Abbott government in 2014), declaring that there would never be another one, as if the attempt to reduce vehicle emissions – carbon emissions – had nothing to do with carbon and its reduction, which was what the carbon pricing scheme was all about. This is the artificiality of adversarial systems – where two parties pretend to be further apart than they really are, so that they can engage in the apparently congenial activity of trading insults and holier-than-thou tirades. It’s so depressing. Frydenberg was at pains to point out that the government’s interest in reducing fuel emissions was purely to benefit family economies. It would’ve taken nothing but a bit of honesty and integrity to also say that reduced emissions would be environmentally beneficial. But this apparently would be a step too far.

In my next post I hope to get my head around battery storage technology, and lithium-ion batteries.

References/links

https://ussromantics.com/2017/07/14/whats-weatherills-plan-for-south-australia-and-why-do-we-have-the-highest-power-prices-in-the-world-oh-and-i-should-mention-elon-musk-here-might-get-me-more-hits/

https://ussromantics.com/2011/06/25/adversarial-approaches-do-we-need-them-or-do-we-need-to-get-over-them/

http://ourenergyplan.sa.gov.au/

http://www.abc.net.au/news/2017-04-13/sa-gas-fire-power-station-gains-international-interest/8442578

https://www.premier.sa.gov.au/index.php/jay-weatherill-news-releases/7263-new-legislation-puts-power-back-in-south-australians-hands

http://www.abc.net.au/news/2017-04-13/sa-gas-fire-power-station-gains-international-interest/8442578

https://www.parliament.sa.gov.au/Legislation/BillsMotions/SALT/Pages/default.aspx?SaltPageTypeId=2&SaltRecordTypeId=0&SaltRecordId=4096&SaltBillSection=0

http://www.abc.net.au/news/2017-03-30/new-solar-project-announced-for-sa-riverland/8400952

http://www.investopedia.com/terms/e/equityfinancing.asp

https://en.wikipedia.org/wiki/Carbon_pricing_in_Australia

 

is wind power prohibitively expensive? apparently not

(this is reblogged from the new ussr illustrated, first published July 3 2017)

that’s a bloody big blade

Recently I heard retiring WA liberal senator Chris Back being interviewed, mainly on funding for Catholic schools, on ABC’s breakfast program. He was threatening to cross the floor on the Gonski package, but while he was at it he took a swipe at wind power, claiming it was heavily subsidised and not cost effective. Unfortunately I’ve not been able to find the whole interview online, to get his exact words, but as someone interested in renewables, and living in a state where wind power is prominent, I want to look more carefully at this issue.

On googling the question I’ve immediately been hit by link after link arguing that wind power is just too expensive. Is this a right-wing conspiracy? What are the facts? As I went deeper into the links – the second and third pages – I did become suspicious, as attacks on wind power spread to solar power and renewable energy in general. It seems there’s either a genuine backlash or there’s some manipulating going on. In any case it seems very difficult to get reliable, unbiased data one way or another on the cost-effectiveness of this energy source.

Of course, as with solar, I’m always hearing that wind power is getting cheaper. Thoughts off the top of my head: a standard wind farm of I don’t know how many units would be up-front quite expensive, though standardised, ready-tested designs will have brought per unit price down over the years. Maintenance costs, though, would be relatively cheap. And maybe with improved future design they could generate power at higher wind speeds than they do now. They seem to be good for servicing small towns and country regions. How they work with electricity grids is largely a mystery to me. There’s a problem with connecting them to other energy sources, and they’re not reliable enough (because the wind’s not reliable enough) to provide base-load power. I don’t know if there’s any chance of somehow storing excess energy generated. All of these issues would affect cost.

I also wonder, considering all the naysayers, why hard-headed governments, such as the Chinese, are so committed to this form of energy. Also, why has the government of Denmark, a pioneering nation in wind power, backed away from this resource recently, or has it? It’s so hard to find reliable sources on the true economics of wind power. Clearly, subsidies muddy the water, but this is true for all energy sources. It’s probably quixotic to talk about the ‘real cost’ of any of them.

Whatever the cost, businesses around the world are investing big-time in wind and other forms of renewable energy. In the US, after the bumbling boy-king’s highly telegraphed withdrawal from the Paris agreement, some 900 businesses and investors, including many of the country’s largest firms, signed a pledge to the UN that there were still ‘in’. The biggest multinational companies are not only jumping on the bandwagon, they’re fighting to drive it, creating in the process an unstoppable global renewable energy network.

The Economist, an American mag, had this to say in an article only recently:

In America the cost of procuring wind energy directly is almost as cheap as contracting to build a combined-cycle gas power plant, especially when subsidies are included…. In developing countries, such as India and parts of Latin America and the Middle East, unsubsidised prices at solar and wind auctions have fallen to record lows.

Australia’s current government, virtually under siege from its conservative faction, is having a hard time coming to terms with these developments, as Chris Back’s dismissive comments reveal, but the direction in which things are going vis-à-vis energy supply is clear enough. Now it’s very much a matter of gearing our electricity market to face these changes, as soon as possible. Without government support this is unlikely to happen, but our current government is more weakened by factionalism than ever.

Australia is 17th in the world for wind power, with a number of new wind farms becoming operational in the last year or so. South Australia’s push towards wind power in regional areas is well known, and the ACT is also developing wind power in its push towards 100% renewable energy by 2020. Australia’s Clean Energy Councilprovides this gloss on the wind energy sector which I hope is true:

Technological advances in the sector mean that wind turbines are now larger, more efficient and make use of intelligent technology. Rotor diameters and hub heights have increased to capture more energy per turbine. The maturing technology means that fewer turbines will be needed to produce the same energy, and wind farms will have increasingly sophisticated adaptive capability.

The US Department of Energy website has a factsheet – ‘top 10 things you didn’t know about wind power’, and its second fact is bluntly stated:

2. Wind energy is affordable. Wind prices for power contracts signed in 2015 and levelized wind prices (the price the utility pays to buy power from a wind farm) are as low as 2 cents per kilowatt-hour in some areas of the country. These rock-bottom prices are recorded by the Energy Department’s annual Wind Technologies Market Report.

As The Economist points out, in the article linked to above, Trump’s ignorant attitude to renewables and climate science will barely affect the US business world’s embrace of clean energy technology. I’m not sure how it works, but it seems that the US electricity system is less centralised than ours, so its states are less hampered by the dumbfuckery of its national leaders. If only….