Tag Archives: climate change

buildings that reduce energy consumption

average energy use in an Australian home, 2011

average energy use in an Australian home, 2011

The energy solutions world has obviously been given a big boost by the decisions in Paris recently, so all the more reason to analyse the success of changes to building designs, and how they can lead to lower emissions worldwide in the future. As I wrote last year, Australia has been consuming less electricity of late, a turnaround which is a historical first, and the main cause has been energy-efficient new buildings and appliances, regulated by government here, no doubt in conformity with other western regulatory systems. So what exactly have these changes been, and how far can we go in creating energy-efficient buildings?

In Australia, all new buildings must comply with the Building Code of Australia, which prescribes national energy efficiency requirements and here in South Australia the government has a comprehensive website outlining those requirements as well as, presumably, state additions. New buildings must achieve a six star rating, though concessions can be made in some circumstances. In South Australia, energy efficiency standards are tied to three distinct climate zones, but the essential particulars are that there should be measures to reduce heating and cooling loads, good all-round thermal insulation, good glazing, sealing and draught-proofing, good ventilation, effective insulation of piping and ductwork, energy efficient lighting and water heating, and usage of renewable energy such as solar.

SA has developed a strategic plan to improve the energy efficiency of dwellings by 15% by 2020, targeting such items as air-conditioners and water heaters, and in particular the energy efficiency of new buildings, as retro-fitting is often problematic. However, the state government reports success with the energy efficiency of its owned and leased buildings, which had improved by 23.8% in 2014, compared to 2001. They are on target for a 30% improvement by 2030.

But energy efficiency for new housing doesn’t end with the buildings themselves. The Bowden housing development, which is currently being constructed in my neighbourhood, aims to reduce energy consumption and emissions through integrated community living and facilities, green spaces, effective public transport and bikeways, convenient shopping, dining and entertainment, and parks and gardens for relaxation and exercise. It all sounds a bit like paradise, and I must admit that, as I grow older, the final picture is still a long from taking full shape, but as we move away from oil, upon which we still rely for transport, this kind of integrated community living could prove a major factor in reducing oil consumption. The national broadband system will of course play a role here, with more effective internet communication making it easier to conference nationally and internationally without consuming so much jet fuel. It’s probably fair to say that this is an area of great waste today, with large amounts of greenhouse gases being emitted for largely unnecessary international junkets.

Recently it was announced that the Tesla Powerwall, the new energy storage technology from Elon Musk’s company, will begin local installation in Australia, with the first installations happening this month (February 2016). There are other battery storage systems on offer too, so this is another burgeoning area in which residential and other buildings can be energy-efficient.

So we’re finally becoming smarter about these things, and it’s making measurable inroads into our overall energy consumption. Other strategies for lightening our environmental footprints include embodied energy and cogeneration. These are described on the Urban Ecology Australia website. Embodied energy is:

The energy expended to create and later remove a building can be minimised by constructing it from locally available, natural materials that are both durable and recyclable, and by designing it to be easy to dismantle, with components easy to recover and reuse.

And cogeneration is defined thus:

Cogeneration involves reusing the waste heat from electricity generation, thus consuming less fuel than would be needed to produce the electricity and heat separately.
Small, natural gas powered electricity generators in industrial or residential areas can supply heat for use by factories, office buildings, and household clusters.
The heat can be used for space heating, hot water, and to run absorption chillers for refrigeration and air-conditioning. It can be used in industry for chemical and biological processes.

Clearly there’s no over-arching technological fix for energy reduction, at least not in the offing, but there are a host of smarter solutions with a combinatorial effect. And governments everywhere can, and should, play a useful, example-setting role.

Australia ranks 10th of these 16 countries for energy efficiency. However, we're 16th for energy-efficient transport, so presumably we're further up the ladder for housing

Australia ranks 10th of these 16 countries for energy efficiency. However, we’re 16th for energy-efficient transport, so presumably we’re further up the ladder for housing

we need to support innovative design in renewables

Merkel tells Obama about the size of the problem (against a 'hey, the climate looks effing good to me' background)

Merkel tells Obama about the size of the problem (against a ‘hey, the climate looks effing good to me’ background)

Unfortunately Australia, or more accurately the Australian government, is rapidly reaching pariah status on the world stage with its inaction on carbon reduction and its clear commitment to the future of the fossil fuel industries, particularly coal. In a recent UN conference in Bonn, Peter Woolcott, a former Liberal Party apparatchik who was appointed our UN ambassador in 2010 and our ‘ambassador for the environment’, a new title, in November 2014, was asked some pointed questions regarding Australia’s commitment to renewable energy and combatting climate change. The government’s cuts to the renewable energy target, its abandonment of a price on carbon, and its weak emission reduction targets all came under fire from a number of more powerful nations. Interestingly, at the same time the coal industry, highly favoured by the Abbott government, is engaged in a battle, both here and on the international front, with its major rival, the oil and gas industry, which clearly regards itself as cleaner and greener. Peter Coleman, the CEO of Woodside Petroleum, has mocked ‘clean coal’ and claimed that natural gas is key to combatting climate change, while in Europe oil companies are calling for the phasing out of coal-powered plants in favour of their own products. In the face of this, the Abbott government has created a $5 billion investment fund for northern Australia, based largely on coal.

So, with minimal interest from the current federal government, the move away from fossil fuels, which will be a good thing for a whole variety of reasons, has to be directed by others. Some state governments, such as South Australia, have subsidised alternative forms of energy, particularly wind, and of course the rooftop solar market was kick-started by feed-in tariffs and rebates, since much reduced – and it should be noted that these subsidies have always been dwarfed by those paid to fossil fuel industries.

The current uptake of rooftop solar has understandably slowed but it’s still happening, together with moves away from the traditional grid to ‘distributed generation’. Two of the country’s major energy suppliers, Origin and AGL, are presenting a future based on renewables to their shareholders. Origin has plans to become the nation’s number one provider of rooftop solar. Currently we have about 1.4 million households on rooftop solar, with potential for about five million more.

Meanwhile, thanks in large part to the persuasive powers of German Chancellor Angela Merkel, who’s been a formidable crusader for alternative energy in recent years, Canada and Japan, both with conservative governments and a reluctance to commit to policies to combat global warming, have been dragged into an agreement on emission reductions. So the top-down pressure continues to build, while bottom-up ingenuity, coming from designers and innovators in far-flung parts of the world and shared with greater immediacy than ever before, is providing plenty of inspiration. Let me look at a couple of examples in the wield of wind power, taken initially from Diane Ackerman’s dazzling book The human age: the world shaped by us.

Recent remarks by Australia’s Treasurer, Joe Hockey, and then our Prime Minister, Tony Abbott, about the ‘ugliness’ of wind farms, together with the PM’s speculations about their negative health effects, give the impression of being orchestrated. Abbott, whose scientific imbecility can hardly be overstated, is naturally unaware that the National Health and Medical Research Council (NHMRC), the Australian government’s own body for presenting the best evidence-based information on health matters that might impact on the public, released two public papers on wind farms and human health in February 2015. Their conclusion, based on the best available international studies, is that there is no consistent evidence of adverse health effects, though they suggest, understandably, that considering public concerns, more high-quality research needs to be done.

the Windstalk concept

the Windstalk concept

As to the aesthetic issue, one has to wonder whether Hockey and Abbott really prefer the intoxicating beauty of coal-fired power stations. More importantly, are they opposed for aesthetic or other reasons to the very concept of harvesting energy from the wind? Because the now-traditional three blade wind turbine is far from being the only design available. One very unusual design was created by a New York firm, Atelier DNA, for the planned city of Masdar, near Abu Dhabi. It’s called Windstalk, and it’s based on a small forest of carbon fibre stalks each almost 60 metres high, which generate energy when they sway in the wind. They’re quieter than three-blade turbines and they’re less dangerous to birds and bats. As to the energy efficiency and long-term viability of the Windstalk concept, that’s still a matter for debate. There’s an interesting Reddit discussion about it here, where it’s also pointed out that the current technology is in fact very sophisticated in design and unlikely to be replaced except by something with proven superiority in all facets.

a wind wheel, using Ewicon technology

a wind wheel, using Ewicon technology

Still there are other concepts. The ‘Ewicon’ wind-converter takes harvesting the wind in a radically new direction, with bladeless turbines that produce energy using charged water droplets. The standard wind turbine captures the kinetic energy of the wind and converts it into the mechanical energy of the moving blades, which drives an electric generator. The Ewicon (which stands for electrostatic wind energy converter) is designed to jump the mechanical step and generate electricity directly from wind, through ‘the displacement of charged [water] particles by the wind in the opposite direction of an electrical field’. The UK’s Wired website has more detail. Still at the conceptual stage, the design needs more input to raise efficiency levels from a current 7% to more like the 20% plus level to be viable, but if these ideas can find needful government and corporate backing, this will result not only in greater and faster improvement of existing concepts, but a greater proliferation of innovative design solutions. 

Current trends in solar

Barak Obama talking up the solar power industry

Barak Obama talking up the solar power industry

i was reading an article recently called how solar power workswhich was quite informative, but it mentioned that some 41,000 homes in Australia had solar PVs on their rooves by the end of 2008, and this was expected to rise substantially by 2009. This sounded like a very small figure, and I wondered if there was more recent data. A quick search turned up a swag of articles charting the rise and rise of rooftop solar installations in recent years. The data in just about every article came from the Australian Clean Energy Regulator (ACER). Australia swept past 1 million domestic solar installations in March 2013 with solar advocates predicting a doubling, at minimum, within the following two years. That hasn’t happened, but still the take-up has been astonishing in the past six or seven years. This article from a month ago claims 1.3 million PVs, with another 170,000 systems going up annually, though it doesn’t quote sources. Others are saying that the industry is now ‘flagging’, due to the retreat of state-based subsidies, though the commercial sector is now getting in on the act, having recently tripled its share of the solar PV market to 15%. The current federal government seems unwilling to make any clear commitment to domestic solar, but the Clean Energy Finance Corp, which was established by the Gillard government, and which the Abbott government wants to axe, is now engaged in a deal with ET Solar, a Chinese company, to help finance the solarisation of shopping centres and other commercial energy users. Shopping centres, which operate all day virtually every day, would seem to be an ideal target for solar PV installation. Presumably these projects will go ahead as the Abbott government seems unable or unwilling to engage in Senate negotiations which will allow its policies, including those of axing the entities of previous governments, to progress.

There’s so much solar news around it’s hard to keep track of, but I’ll start locally, with South Australia. By the end of 2014 some 23% of SA homes had solar PV, a slight increase on the previous year. One effect has been to shift the peak power period from late afternoon to early evening (just after 7PM). South Australia leads the way with the highest proportion of panels, with Queensland close behind. Australia’s rapid adoption of rooftop solar is surpassed only by Japan. The Japanese are now voting decisively against nuclear energy with their panels.

SA-Bozing-day-solar

This graph  (from the Renew Economy website) shows that on Boxing Day last year (2014) rooftop solar in SA (the big yellow peak) reached one third of demand in the middle of the day, and averaged around 30% from 11.30am to 3.30pm. With our heavy reliance on wind power here, this means that these two renewable power sources accounted for some two thirds of demand during that period. Sadly, though, with the proposed reduction of the Renewable Energy Target, wind and solar (small and large scale) are being forced to compete with each other for more limited opportunities.

There are some short-term concerns. Clearly the federal government isn’t being particularly supportive of renewables, but it’s highly likely the conservatives will be out of office after the late 2016 election, after which there may be a little more investment certainty. There’s also clear evidence now that small-scale solar uptake is declining, though it’s still happening. Profit margins for solar companies are suffering in an increasingly competitive marketplace, so large-scale, more inherently profitable projects will likely be the way of the immediate future. Still, the greater affordability of solar PV over the last few years will ensure continued uptake, and a greater proportion of households taking advantage of the technology. According to a recent International Energy Association (IEA) publication:

The cost of PV modules has been divided by five in the last six years; the cost of full PV systems has been divided by almost three. The levelised cost of electricity of decentralised solar PV systems is approaching or falling below the variable portion of retail electricity prices that system owners pay in some markets, across residential and commercial segments.

The 2014 publication was a ‘technology roadmap’, updated from 2010. Based on the unexpectedly high recent uptake of solar PV, the IEA has revised upwards its share of global electricity production from 11% to 16% by 2050. But on the barriers to expansion, the IEA’s remarks in the foreword to this document read like a warning to the Australian government

Like most renewable energy sources and energy efficiency improvements, PV is very capital-intensive: almost all expenditures are made up-front. Keeping the cost of capital low is thus of primary importance for achieving this roadmap’s vision. But investment and finance are very responsive to the quality of policy making. Clear and credible signals from policy makers lower risks and inspire confidence. By contrast, where there is a record of policy incoherence, confusing signals or stop-and-go policy cycles, investors end up paying more for their finance, consumers pay more for their energy, and some projects that are needed simply will not go ahead. 

The four-year gap between each IEA roadmap may be too long, considering the substantial changes that can occur in the energy arena. There was greater growth in solar PV capacity in the 2010-2014 period than there was in the four previous decades. The possibilities of solar energy really began to catch on with the energy crisis of the seventies, and the technology has received a boost more recently due to climate change and the lack of effective leadership on the issue. The charge was led by European countries such as Germany and Italy, but since 2013 China has been leading the pack in solar PV adoption.

What, though, of the long-term future? That’s a subject best left for another post, but clearly solar is here to stay, and its energy share will continue to expand, a continued expansion that is causing problems for industries that have traditionally (though only over the past couple of centuries actually) profited from our expanding energy needs. Our future is bound up in how we can handle transitions that will be necessary if we are to maintain energy needs with a minimum of damage to our biosphere.

What is the future for renewable energy in Australia?

coffs-coast-climate_action-group-copyright-seenaustralia-001a-mv5y0v4cay562s49wi2_t460

It’s the energy of the future, according to its promoters. I’m talking about solar, wind and other sources of renewable energy. It seems, though, that due to ‘institutional dysfunction’, as one pundit describes it, renewable energy is facing a bleak future in Australia, at least in the short term.

Recently a review of the nation’s renewable energy target (RET), by a panel chosen by the Prime Minister’s office, has recommended substantially reducing the target. The panel was headed by a former chairman of Caltex Oil, Dick Warburton, who is unconvinced that increased carbon dioxide causes global warming. He’s wrong about that.

The RET is currently set at 41,000 gigawatts an hour of renewable energy by 2020, and it apparently represents a threat to the traditional energy companies at a time when electricity consumption is falling. As Ross Gittins points out in The Sydney Morning Herald, the fall in consumption over the last four years is unprecedented and has taken the industry completely by surprise.

So why has consumption fallen? According to an Australia Institute report by Dr Hugh Saddler, the decline has been entirely at the expense of coal-fired generators, many of which are struggling to be profitable. The main cause is simply an increase in energy-efficient buildings and appliances, due to regulations brought in in the late 90s. Other factors, in order of significance, include the economic shift from electricity-driven industry (with major steelworks, aluminium smelters and oil refineries, either shutting down or cutting back), the failure of many other electricity-guzzling industries to grow as expected, and, since 2010, consumer response to higher electricity prices and the carbon tax (either the real one or the slightly scarier one concocted by the conservatives in opposition). The price hikes, ironically, were largely a result of expenditure on upgraded poles and wires to meet expected new peaks in summer demand. The decreased residential usage provided intriguing proof that we can, if needs must, wean ourselves from ever-spiralling consumption. Meanwhile the increased capacity, for which consumers will continue to pay into the future, remains unused.

So what has this to do with renewable energy, and why does the Prime Minister’s panel recommend downgrading the RET? According to Peter Martin, the economics editor of The Age, it’s because the renewable energy sector has gotten too big for its boots and is significantly cutting into the profits of the fossil fuel industries. However, the repealing of the carbon tax was a big win for those industries, and the abandoning of the old RET, assuming the panel’s recommendations will be acted upon, will be another boost.

It looks like the federal government, probably under pressure from the fossil fuel lobby, is set to reduce or abandon the RET. The Warburton panel was set up in February by a Prime Minister who has stated at a public meeting that anthropogenic global warming is ‘bullshit’ (though he has tried to backpedal furiously from this since). The conservatives have chosen to ignore a review of the RET by the Climate Change Authority, released in December 2012. The Climate Change Authority was set up under the Gillard labor government in July 2012 to conduct climate change research and to regularly review associated policies, but the conservatives are trying to scrap it, though their first attempt was blocked in the Senate in March of this year, and the Authority now appears to be in limbo. It’s difficult not to conclude that the Warburton panel, which includes other industry heavyweights, has been set up to deliver the government what it wants.

So, bearing in mind the guidelines to problems and solutions I’ve taken from David Waltner-Toews, what exactly are the problems here, and how can we move towards solutions?

Not surprisingly, there’s more than one problem. For example, one problem is with the Warburton panel itself. The strong perception within the renewable energy sector and its potential investors is that the panel’s findings are already known, and that RET targets will be reduced or abandoned, leading to job losses and a substantial loss in investor confidence. In fact investors are already backing out because of the new climate of uncertainty.

Of course the panel isn’t bent on destruction. It presumably sees the problem elsewhere – a substantial decrease, at least domestically, in fossil fuel consumption. But why would anyone want to preserve a highly polluting industry when there are clean alternatives available? Well I can think of two reasons, apart from the obvious vested interests. First, job losses. The Greens and other clean energy advocates are heavily emphasising the job and investment losses in that market if the RET were to be abandoned, but of course the fall in consumption together with the challenge of the new technologies were leading to the same problems on the other side, and of course losses on one side can’t be simplistically balanced by gains on the other, and I’ve no idea how the actual numbers would fall out. Second, these industries aren’t simply limited to the domestic market. In fact the industry has long been heavily subsidised by the federal government because its exports are a major contributor to government revenues and to foreign exchange earnings. The government protection of the industry has of course been strongly criticised by the renewable energy sector, which is keen to point out that Australia is the highest per capita emitter of greenhouse gases in the world, with the fossil fuel industry playing the primary role in maintaining that record. But it’s difficult, especially for a conservative government with little obvious concern for the greenhouse issue, to see beyond the substantial revenues that coal and natural gas are bringing in.

Before we start talking solutions, we need to squarely face the evidence. Anthropogenic global warming is happening, and climate scientists are only in disagreement about rates and precise consequences in what is an enormously complex climate system. As just mentioned, Australians  have the worst per capita record in the world in contributing to the problem, and our coal industry produces about 38% of our total greenhouse gas emissions.

The aim should be to reduce our emissions while still providing all the energy required to maintain our lifestyles – though all the while being mindful that some tweaking of those lifestyles might substantially reduce emissions. We need to win the battle with government, as to the value and the necessity of emissions reduction, but we also need to be realistic. How much of our energy needs can be met by renewables, now and in the near future? Is it worth trying to clean up the fossil fuel industry? Is clean coal a possibility, or a myth?

On this latter issue, a US organisation, the Union of Concerned Scientists, has this to say:

Technology is evolving that has the potential to substantially reduce coal’s contribution to global warming by capturing carbon emissions before they are emitted. This technology could become an important part of the battle against global warming, but it remains to be seen whether it will work at a commercial scale and at what cost.

So here’s one weighty problem. We’re still heavily reliant on fossil fuels, though that reliance is reducing, as well as our overall energy usage. Reduced energy usage is seen as a problem rather than a victory, which may be a perception problem rather than a real problem, but it is a real problem insofar as the fossil fuel industry is losing revenue locally, which is affecting its ability to be competitive in the overseas market. Around 70% of Australia’s coal production is sent overseas, making Australia proportionally the world’s largest coal exporter. Coal is our second biggest export earner, worth more than $40 billion per annum.

Another problem is that we’re paying, into the future, for the new infrastructure above-mentioned. Arguably, we’re paying for the lack of foresight of the fossil fuel industry, which is passing on to the consumer the costs of an unnecessary extra capacity. Presumably if more consumers switch to solar for their domestic energy supply, this infrastructure cost burden will be shared among fewer people.

Also, those that want to reduce Australia’s carbon emissions through reduction of our fossil fuel production and exports have to counter the argument that our exports represent some 5% of global coal consumption, while the economic cost to us of cutting exports would be very substantial. It’s the ‘great pain for little gain’ argument.

There’s also another good point made by Chris Greig, Professor of Energy Strategy at the University of Queensland. We make the mistake, living as we do in an energy-rich nation, of assuming that our supply of coal is simply adding to the abundance, with disastrous consequences, but there are many parts of the world that are energy-poor, and would be deprived of opportunities to rise from poverty if the fuel supply from nations such as ours were to be cut off. By all means we should try to improve the efficiency of the fuel we export, and we should be looking to renewable alternatives in these energy-deprived regions, but some renewables are not suitable for some regions, and most cannot deliver base-load power as they currently stand. There are no easy solutions to this problem. Curently – and this returns me to my previous post – there’s a huge problem of indoor pollution in developing countries due to the lack of a clean, or cleaner, energy supply. Professor Greig effectively summarises the issue:

Few Australians realise that two million people in developing countries die each year due to indoor air pollution from biomass combustion – typically a black smoke containing fine particulates, carbon monoxide and nitrogen oxides. The indirect consequences are also far-reaching. The relentless harvesting of biomass wood for fuel is responsible for depleting groundwater systems and declining agricultural productivity, which in turn leads to food and water shortages and reinforces the poverty cycle. And let’s not forget the one billion tonnes of CO2 that are released annually as a result of this rudimentary burning of biomass materials.

All of this is further evidence of the complexity and messiness of the issues involved. Clearly they won’t be fully covered in this post, and I’ll be returning to the subject in the future, to look at nuclear power among other things. I’ve also got Naomi Klein’s monumental opus, This changes everything, a tale of climate change and capitalism, to plough through.

Meanwhile, the Australian situation with regard to renewables is still very much up in the air, with Federal Environment Minister now making assurances that the RET will not be scrapped, while not ruling out a downgrading. Climate Change Authority head Bernie Fraser, along with Business SA, suggest retaining the 41,000GWh target but extending the time-frame beyond 2020. This might help to maintain business investment while taking a little pressure off the fossil fuel industry, which might take the opportunity to review and improve future planning, with perhaps a greater focus on exports.

Whatever the future for all these businesses and technologies, the aim of a more sustainable, less carbon-intensive and less polluting energy supply should be paramount. If that means job losses as the dirtiest and least efficient power plants are closed, then that needs to be faced, unless they can be profitably cleaned up.

Having said that, Australia’s future lies in renewables, especially wind and solar. Our current government seems to be having trouble taking the long view on this, and it’s positively embarrassing to find a country that is in many areas among the most modern and technologically developed in the world falling behind so badly in a field we should be leading. I await with interest the government’s coming announcement on the RET. I’m sure they realise what’s at stake.